Shumiao Ouyang

Department of Economics and Bendheim Center for Finance, Princeton University

> EBA Policy Research Workshop October 2022

Introduction •00

A Solution to the Financial Inclusion Challenge?

Hard to extend credit access to the underprivileged

A Solution to the Financial Inclusion Challenge?

- Hard to extend credit access to the underprivileged
- New technologies

Introduction •00

- Better collection and usage of data (Agarwal et al., 2021; Berg et al., 2020)
- More advanced credit risk predictive models (Fuster et al., 2019, 2022)
- More accessible financial accounts (Ouma et al., 2017)

A Solution to the Financial Inclusion Challenge?

- Hard to extend credit access to the underprivileged
- New technologies

Introduction

- Better collection and usage of **data** (Agarwal et al., 2021; Berg et al., 2020)
- More advanced credit risk predictive models (Fuster et al., 2019, 2022)
- o More accessible financial accounts (Ouma et al., 2017)
- Mobile cashless payment provided by BigTech firms
 - Naturally combines all these advancements
 - Has accelerated the shift from cash to cashless economy

- Hard to extend credit access to the underprivileged
- New technologies
 - Better collection and usage of **data** (Agarwal et al., 2021; Berg et al., 2020)
 - More advanced credit risk predictive models (Fuster et al., 2019, 2022)
 - o More accessible financial accounts (Ouma et al., 2017)
- Mobile cashless payment provided by BigTech firms
 - Naturally combines all these advancements
 - Has accelerated the shift from cash to cashless economy
- BigTech credit is booming globally and overtaking FinTech credit (Cornelli et al., 2021)

A Solution to the Financial Inclusion Challenge?

- Hard to extend credit access to the underprivileged
- New technologies
 - Better collection and usage of **data** (Agarwal et al., 2021; Berg et al., 2020)
 - More advanced credit risk predictive models (Fuster et al., 2019, 2022)
 - More accessible financial accounts (Ouma et al., 2017)
- Mobile cashless payment provided by BigTech firms
 - Naturally combines all these advancements
 - Has accelerated the shift from cash to cashless economy
- BigTech credit is booming globally and overtaking FinTech credit (Cornelli et al., 2021)

Research Question

Has cashless payment facilitated lending to the traditionally underserved? If so, how?

Hard to Estimate Effects of Cashless Payment on Credit

Hard to Estimate Effects of Cashless Payment on Credit

• Requires an exogenous shock on the cashless payment activity

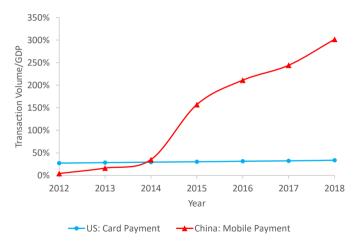
- Requires an exogenous shock on the cashless payment activity
- Requires detailed individual-level data on payment, credit, and so on

Hard to Estimate Effects of Cashless Payment on Credit

- Requires an exogenous shock on the cashless payment activity
- Requires detailed individual-level data on payment, credit, and so on
- A natural experiment + rich administrative data from Alipay

- Cashless payment flow facilitates credit provision and take-up
 - Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow 56.3\%$
 - In-person payment amount $\uparrow 1\% \rightarrow \text{credit line } \uparrow 0.41\%$

- Cashless payment flow facilitates credit provision and take-up
 - Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow 56.3\%$
 - \circ In-person payment amount $\uparrow 1\% \rightarrow$ credit line $\uparrow 0.41\%$
- BigTech takes advantage of information in the payment flow
 - Beyond what is in credit usage, repayment, and assets under management (AUM)


- Cashless payment flow facilitates credit provision and take-up
 - Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow 56.3\%$
 - In-person payment amount $\uparrow 1\% \rightarrow \text{credit line} \uparrow 0.41\%$
- BigTech takes advantage of information in the payment flow
 - Beyond what is in credit usage, repayment, and assets under management (AUM)
 - Information value of payment data
 - Credit line \(\gamma 57.7\) (2,088 CNY)
 - Annual consumer welfare ↑ 151.2 CNY per capita
 - Annual lender profit \(\frac{62.4 CNY}{} \) per capita

Introduction

- Cashless payment flow facilitates credit provision and take-up
 - Use in-person payment in a month \rightarrow likelihood of credit access $\uparrow 56.3\%$
 - In-person payment amount $\uparrow 1\% \rightarrow \text{credit line} \uparrow 0.41\%$
- BigTech takes advantage of information in the payment flow
 - Beyond what is in credit usage, repayment, and assets under management (AUM)
 - Information value of payment data
 - Credit line \(\gamma 57.7\) (2,088 CNY)
 - Annual consumer welfare ↑ 151.2 CNY per capita
 - Annual lender profit \(\frac{62.4 CNY}{} \) per capita
- The financially underserved benefit more from it
 - Stronger credit provision effects on the less educated and older
 - More credit provision also leads to higher consumer welfare

Data and Identification

Observation 1: Rise of Cashless Payments

Source: US Federal Reserve, PBOC, World Bank

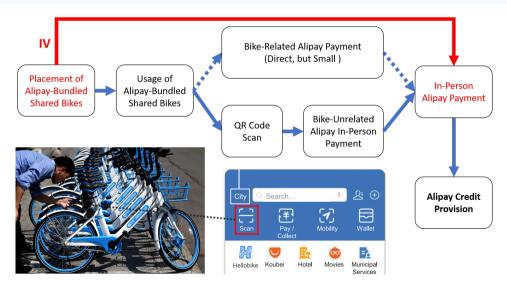
- Alipay: the largest mobile wallet with more than 1 billion users Alipay's Business Structure
- Huabei credit line: the largest consumer finance product Huabei's Product Features

- Alipay: the largest mobile wallet with more than 1 billion users (Alipay's Business Structure)
- Huabei credit line: the largest consumer finance product (Huabei's Product Features)
- In a representative sample of Alipay users
 - o 72% have access to Huabei credit line

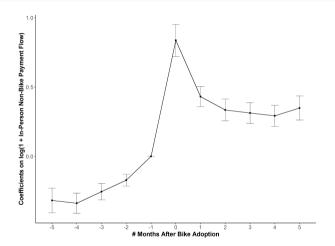
- Alipay: the largest mobile wallet with more than 1 billion users (Alipay's Business Structure
- Huabei credit line: the largest consumer finance product (Huabei's Product Features)
- In a representative sample of Alipay users
 - o 72% have access to Huabei credit line
- Among those with Huabei access
 - \circ 95% have used the credit, with an average monthly usage of 533 CNY (\sim 80 USD)

- Alipay: the largest mobile wallet with more than 1 billion users Alipay's Business Structure
- Huabei credit line: the largest consumer finance product (Huabei's Product Features)
- In a representative sample of Alipay users
 - o 72% have access to Huabei credit line
- Among those with Huabei access
 - \circ 95% have used the credit, with an average monthly usage of 533 CNY (\sim 80 USD)
- Even among those who do not have a credit card on file
 - 64% have access to Huabei credit line

Data


- Representative Random Sample from Population
 - 41,485 Alipay users with in-person cashless payment activities
 - Individual-level monthly panel data with detailed information
 - Personal characteristics
 - Payment, credit, investment, and other digital footprints

Data


- Representative Random Sample from Population
 - 41,485 Alipay users with in-person cashless payment activities
 - Individual-level monthly panel data with detailed information
 - Personal characteristics
 - Payment, credit, investment, and other digital footprints
- Sample Period
 - From May 2017 to September 2020
 - Both mobile payment and bike-sharing industries develop fast

Alipay and Bike-Sharing Industry

Alipay Registration and Bike Adoption

The Nudge: Bike Adoption and Non-Bike Payment Flow

$$log(1 + In-Person Non-Bike Payment Flow)_{i,t} = \alpha_0 + \sum_{t=0}^{\infty} \beta_{\tau} \cdot \mathbb{1}(t = \tau) + \beta_5 \cdot \mathbb{1}(t \geq 5) + \delta_i + \mu_t + \varepsilon_{i,t}$$

The Relevance Condition

	$log(1 + In-Person Payment Flow)_{i,t}$			
	(1)	(2)	(3)	
$log(Bike\ Placement)_{c,t}$	0.041***	0.011		
	(0.010)	(0.009)		
Bike $User_i \times log(Bike\ Placement)_{c,t}$		0.103***		
		(0.017)		
After First Bike Usage _{i.t}			-0.123	
-,-			(0.161)	
After First Bike $Usage_{i,t} \times log(Bike Placement)_{c,t}$			0.049***	
<i>y</i>			(0.014)	
Individual FE	YES	YES	YES	
Year-Month FE	YES	YES	-	
$City imes Year ext{-}Month FE$	NO	NO	YES	
Clustered by City and Year-Month	YES	YES	YES	
Sample	Full Sample	Full Sample	Bike Users	
Observations	1,238,309	1,238,309	435,872	
Adjusted R ²	0.551	0.552	0.490	
Note:	* $p < 0.1$; ** $p < 0.05$; *** $p < 0.0$			

The Exclusion Restriction

	$log(1 + Credit Line)_{i,t}$			
	(1)	(2)	(3)	
$log(Bike\ Placement)_{c,t}$	0.027***	0.009		
	(800.0)	(0.010)		
Bike $User_i \times log(Bike Placement)_{c,t}$		0.060**		
		(0.023)		
After First Bike Usage _{i,t}			-0.231	
-,-			(0.157)	
After First Bike $Usage_{i,t} \times log(Bike Placement)_{c,t}$			0.070***	
1,72			(0.013)	
Individual FE	YES	YES	YES	
Year-Month FE	YES	YES	-	
City × Year-Month FE	NO	NO	YES	
Clustered by City and Year-Month	YES	YES	YES	
Sample	Full Sample	Full Sample	Bike Users	
Observations	1,238,309	1,238,309	435,872	
Adjusted R ²	0.800	0.800	0.774	
Note:	*p < 0.1	; **p < 0.05;	***p < 0.01	

Bike-Related Characteristics

Characteristics and Exclusion Restriction

Bike Sharing Background

Bike Usage and Exclusion Restriction

Bike Placement and Local Economy

Staggered Bike Placement

Distribution of Bike-Placement Shock

IV Analysis

In-Person Payment Facilitates Credit Provision

	Credit Access _{i,t}		log(Credit Line) _i) _{i,t}	
	(1)	(2)	(3)	(4)	(5)	(6)
	Panel A. 7	wo-Stage Leas	st Squares			
Measure of In-Person Payment Flow _{i,t}	0.086***	0.563***	0.087**	0.281***	2.033**	0.409***
	(0.024)	(0.175)	(0.043)	(0.085)	(0.766)	(0.132)
Panel B. F	irst Stage for	Measure of In-	Person Payme	nt Flow _{i,t}		
$log(Bike Placement)_{c,t}$	0.041***	0.006***	0.030***	0.043***	0.006***	0.024***
	(0.010)	(0.002)	(0.009)	(0.012)	(0.002)	(0.008)
F-Statistic	15.5	10.8	11.2	13.9	10.6	9.1
Adjusted R ²	0.551	0.465	0.432	0.527	0.439	0.401
	Panel C.	Ordinary Least	Squares			
Measure of In-Person Payment Flow _{i,t}	0.010***	0.062***	0.007***	0.022***	0.072***	0.029***
<i>'</i>	(0.001)	(0.007)	(0.001)	(0.003)	(0.023)	(0.002)
Adjusted R ²	0.740	0.741	0.700	0.836	0.835	0.841
Form of the IPF Measure	log(1+x)	1(x > 0)	log(x)	log(1+x)	1(x > 0)	log(x)
Individual FE	YES	YES	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Full Sample	Has Credit	Has Credit	Has Credit
Observations	1,238,309	1,238,309	662,010	779,283	779,283	516,570
Note:				*p < 0.1:	**p < 0.05:	***p < 0.01

IV-OLS Comparison

City-Time FEs

Effect Persistence

Past Payments

Bike Usage

Online Payments

Information Channel vs. Enforcement Channel

	Credit Access $_{i,t}$		<i>log</i> (Cred	it Line) _{i,t}			
	(1)	(2)	(3)	(4)			
Panel A. Two-Stage Least Squares - Information Channel							
$log(1 + In-Person Noncredit Payment Flow)_{i,t}$	0.094***	0.095***	0.329***	0.358***			
	(0.024)	(0.026)	(0.103)	(0.124)			
$log(1 + In-Person Credit Payment Flow)_{i,t}$		-0.005		-0.044			
		(0.006)		(0.029)			
Panel B. Two-Stage Least	: Squares - Ent	forcement Cha	nnel				
$log(1 + In-Person Payment Flow)_{i,t}$	0.097***	0.098***	0.280***	0.282***			
	(0.025)	(0.026)	(0.085)	(0.086)			
$log(1 + Assets \; under \; Management)_{i,t}$	-0.005	-0.008	-0.015	-0.026*			
	(0.004)	(0.005)	(0.011)	(0.013)			
Whether AUM Include Account Balance	NO	YES	NO	YES			
Individual FE	YES	YES	YES	YES			
Year-Month FE	YES	YES	YES	YES			
Clustered by City and Year-Month	YES	YES	YES	YES			
Sample	Full Sample	Full Sample	Has Credit	Has Credit			
Observations	1,238,309	1,238,309	779,283	779,283			
Note:		* $p < 0.1$;	**p < 0.05;	***p < 0.01			

The Financially Underserved Segments

	Financial Service Usage			Financial Literacy			
	# Debit Cards;	$log(1 + Max. AUM)_i$	# Investment Months;	Pay with Real Name;	Use Own Account;	Complete Profile;	
	(1)	(2)	(3)	(4)	(5)	(6)	
Low Education;	-0.694***	-1.078***	-3.076***	-0.119***	-0.087***	-0.122***	
	(0.046)	(0.075)	(0.282)	(0.006)	(0.008)	(800.0)	
Older than Median;	-0.863***	-0.671***	-2.512***	-0.191***	-0.223***	-0.089***	
	(0.025)	(0.045)	(0.141)	(0.006)	(0.009)	(0.005)	
Gender FE	YES	YES	YES	YES	YES	YES	
City FE	YES	YES	YES	YES	YES	YES	
Year-Month FE	YES	YES	YES	YES	YES	YES	
Clustered by City	YES	YES	YES	YES	YES	YES	
Observations	39,459	39,459	39,459	39,459	39,459	39,459	
Adjusted R ²	0.081	0.052	0.036	0.081	0.101	0.046	

Note:

*p < 0.1; **p < 0.05; ***p < 0.01

Financial Inclusion: The Less Educated Get More Credit

	Credit Access _{i,t}		$log(Credit Line)_{i,t}$	
	(1)	(2)	(3)	(4)
	Panel A. Two-Sta	ge Least Squares		
$log(1 + In-Person Payment Flow)_{i,t}$	0.093***	0.024	0.334***	0.038
	(0.027)	(0.044)	(0.109)	(0.073)
Panel B. Firs	t Stage for log(1	+ In-Person Paym	ent Flow $)_{i,t}$	
$log(Bike\ Placement)_{c,t}$	0.039***	0.043***	0.039***	0.053***
	(0.010)	(0.013)	(0.011)	(0.014)
F-Statistic	13.7	10.9	11.6	14.2
Adjusted R^2	0.554	0.563	0.528	0.483
Individual FE	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Has Credit	Has Credit
Subsample	Low Education	High Education	Low Education	High Education
Observations	1,065,769	171,938	657,878	121,194
Note:	* $p < 0.1$; ** $p < 0.05$; *** $p < 0.01$			

Age and Payment-Credit Relationship

Conclusion

Conclusion

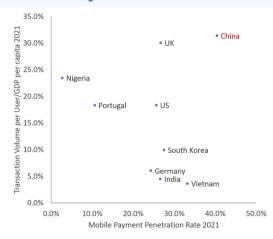
- Open questions (Berg, Fuster and Puri, 2021)
 - Is information from payment flows a causal factor behind credit expansion?
 - Does it benefit customers previously underserved by traditional financial institutions?

- Open questions (Berg, Fuster and Puri, 2021)
 - Is information from payment flows a causal factor behind credit expansion?
 - Does it benefit customers previously underserved by traditional financial institutions?
- This paper argue that answer to both questions is YES
 - With unique data and a new identification strategy
 - The first paper showing that payment information fuels BigTech credit to households

Conclusion

- Open questions (Berg, Fuster and Puri, 2021)
 - Is information from payment flows a causal factor behind credit expansion?
 - Does it benefit customers previously underserved by traditional financial institutions?
- This paper argue that answer to both questions is YES
 - With unique data and a new identification strategy
 - The first paper showing that payment information fuels BigTech credit to households
- Policy implications
 - Mobile payment provides opportunities for sustainable and inclusive finance

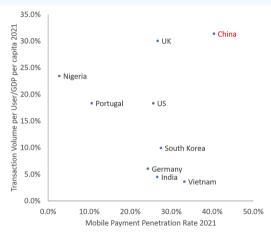
Different Types of Mobile Payments

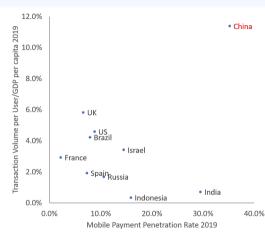

(b) Apple Pay, Card, and Phone

(c) Alipay and Smart Phone

Go Back

1




(a) 2021

Source: Statista Digital Market Outlook, World Bank

Mobile Payment Penetration across Countries

(a) 2021

Source: Statista Digital Market Outlook, World Bank

Go Back

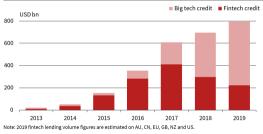
(b) 2019

Alipay: the "All-in-One" Approach to Mobile Payment

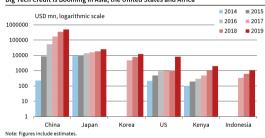
Source: IPO Prospectus of Ant Group, 2020

3

Features of Alipay's Huabei Credit Line


- No active application required
 - Qualification status and credit line instantly available
- No price discrimination
 - 0.05% daily rate (18.25% annually)
 - Interest-free period of up to 40 days
- Excellent risk management
 - Delinquency rate as of June 2019
 - Huabei: 1.16%
 - Credit cards issued by public banks in China: 1.21% to 2.49%

BigTech Credit is Booming Globally


Figure 1
Big Tech Credit Is Overtaking Fintech Credit

(a) BigTech and Fintech Credit

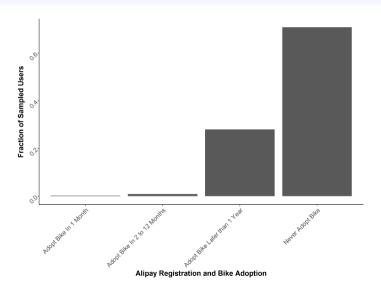
Source: Cornelli et al. (2020), CESifo Forum

Figure 2
Big Tech Credit Is Booming in Asia, the United States and Africa

(b) Global Boom in BigTech Credit

Alipay and Dockless Bike-Sharing Service

Fast growing bike-sharing industry


- Alipay-bundled shared bikes
 - Investment \geq 3.5 billion dollars
 - Strategic partnership
 - Unlock bike directly with Alipay

Source: IPO Prospectus of Hello Inc, 2021; iResearch Report

Alipay Registration and Shared-Bike Adoption

Bike-Related Personal Characteristics

		Bike User;	
	(1)	(2)	(3)
Low Education _i	-0.173***	-0.109***	-0.065***
	(0.009)	(0.010)	(0.009)
Older than Median;	-0.095***	-0.110***	-0.096***
	(0.005)	(0.005)	(0.004)
Early Alipay User _i	-0.129***	-0.113***	-0.030***
	(0.007)	(0.006)	(0.005)
Male;	0.049***	0.059***	0.045***
	(0.004)	(0.004)	(0.004)
Pay with Real Name;	0.088***	0.081***	0.012**
	(0.006)	(0.005)	(0.005)
Use Own Account;	0.076***	0.071***	0.033***
	(0.006)	(0.005)	(0.005)
Complete Profile;	0.012*	0.001	-0.012*
	(0.007)	(0.006)	(0.006)
Constant	0.421***		
	(0.013)		
City FE	NO	YES	YES
Occupation FE	NO	YES	YES
Controls Financial Activity Measures	NO	NO	YES
Clustered by City	YES	YES	YES
Observations	39,459	39,459	39,459
Adjusted R ²	0.123	0.178	0.260
Note:	*p < 0.1; *	**p < 0.05; '	***p < 0.01

Bike Usage, Personal Characteristics, and Exclusion Restriction

	Dependent Variable						
	(1)	(2)	(3)	(4)	(5)	(6)	
Panel A. Ordinary Le	ast Squares with [Dependent Variable: <i>Ic</i>	g(1 + In-Person Pay)	ment Flow);	,t		
$log(Bike Placement)_{c,t}$	-0.022	0.008	0.029**	0.021**	-0.013	-0.010	
	(0.014)	(0.010)	(0.011)	(0.009)	(0.015)	(0.010)	
Bike User _i \times log (Bike Placement) $_{c,t}$	0.139***	0.110***	0.092***	0.099***	0.057**	0.139***	
	(0.029)	(0.018)	(0.017)	(0.021)	(0.025)	(0.029)	
Characteristic Measure _i $\times log(Bike\ Placement)_{c,t}$	0.036**	0.004	-0.038***	-0.023**	0.033*	0.036**	
	(0.017)	(0.013)	(0.012)	(0.008)	(0.019)	(0.017)	
Bike User _i × Characteristic Measure _i × $log(Bike\ Placement)_{c,t}$	-0.040	-0.017	0.009	0.009	0.046**	-0.045	
	(0.031)	(0.018)	(0.025)	(0.020)	(0.023)	(0.031)	
Adjusted R ²	0.552	0.552	0.552	0.552	0.552	0.552	
Panel B. Ordi	nary Least Squares	with Dependent Varia	ble: $log(1+{\sf Credit})$	Line) _{i,t}			
$log(Bike Placement)_{c,t}$	0.009	0.014	0.020	0.004	-0.008	0.003	
	(0.021)	(0.010)	(0.013)	(0.014)	(0.013)	(0.015)	
Bike User _i \times log(Bike Placement) _{c,t}	0.051*	0.053*	0.057*	0.056**	0.049*	0.042**	
	(0.030)	(0.026)	(0.029)	(0.025)	(0.029)	(0.020)	
Characteristic Measure _i \times log(Bike Placement) _{c,t}	0.0001	-0.011	-0.023	0.008	0.024*	0.012	
	(0.026)	(0.018)	(0.025)	(0.012)	(0.014)	(0.014)	
Bike User _i × Characteristic Measure _i × $log(Bike\ Placement)_{c,t}$	0.012	0.016	-0.008	0.007	0.007	0.022	
	(0.025)	(0.028)	(0.046)	(0.019)	(0.037)	(0.034)	
Adjusted R ²	0.800	0.799	0.800	0.799	0.800	0.800	
Personal Characteristic Measure	Low Education;	Older than Median;	Early Alipay User;	Male;	Pay with Real Name;	Use Own Account;	
Individual FE	YES	YES	YES	YES	YES	YES	
Year-Month FE	YES	YES	YES	YES	YES	YES	
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES	
Observations	1,237,707	1,237,707	1,237,707	1,237,707	1,237,707	1,237,707	

Note:

*p < 0.1; **p < 0.05; ***p < 0.01

Background of Bike Sharing Service

Low Cost of Usage

- 0.23 USD/first 15 min
- After the first 15min, 0.08 USD/15min
- Unlimited plan: About 3 USD/month

Large User Base

- The size of the user base of shared bikes in China is 260 million as of late 2019
- Over 400 million Hellobike users in 2021

Direct Effects of Bike Usage

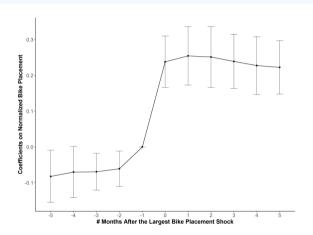
	log(1 + In-P)	erson Payment Flow) $_{i,t}$	log(1 + Cre	edit Line) _{i,t}
	(1)	(2)	(3)	(4)
$log(Bike\ Placement)_{c,t}$	0.011		0.009	
	(0.009)		(0.010)	
One-Time Bike $User_i \times log(Bike Placement)_{c,t}$	0.088***	0.072***	0.048**	0.035
	(0.020)	(0.019)	(0.023)	(0.025)
Repeat Bike User _i \times log(Bike Placement) _{c,t}	0.106***	0.078***	0.062**	0.040
	(0.018)	(0.017)	(0.025)	(0.029)
Individual FE	YES	YES	YES	YES
Year-Month FE	YES	-	YES	-
$City imes Year ext{-}Month FE$	NO	YES	NO	YES
Clustered by City and Year-Month	YES	YES	YES	YES
Observations	1,238,309	1,238,309	1,238,309	1,238,309
Adjusted R ²	0.552	0.555	0.800	0.801

Note:

p* < 0.1; *p* < 0.05; ****p* < 0.01

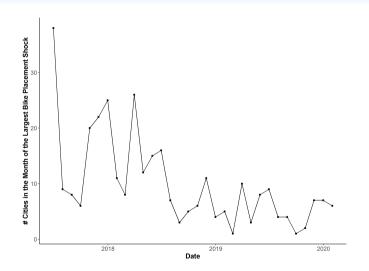
Go Back

Bike Placement and Local Economy


	$log(GDP)_{c,t}$ (1)	$log(GDP per capita)_{c,t}$ (2)	Fiscal Spending/GDP _{c,t} (3)	Fiscal Income/GDP $_{c,t}$ (4)
$log(Bike\ Placement)_{c,t}$	0.002 (0.002)	0.000 (0.002)	-0.001 (0.001)	0.000 (0.000)
City FE Year FE	YES YES	YES YES	YES YES	YES YES
Clustered by City and Year	YES	YES	YES	YES
Observations	895	775	886	891
Adjusted R ²	0.992	0.979	0.957	0.903

Note:

*p < 0.1; **p < 0.05; ***p < 0.01


Staggered Placement of Shared Bikes

Normalized Bike Placement_{c,t} =
$$\alpha_0 + \sum_{j=1}^{4} \beta_{\tau} \cdot \mathbb{1}(t=\tau) \cdot \mathbb{1}(\tau \neq -1) + \beta_5 \cdot \mathbb{1}(t \geq 5) + \delta_c + \mu_t + \varepsilon_{c,t}$$

Broad Distribution of Bike-Placement Shock

Why IV Estimate >> OLS Estimate

- Reason 1: Omitted variables
 - OLS can have a downward bias due to omitted variables
 - Example: A negative health shock

Explanation with an Econometric Framework

- Reason 2: Non-monotone payment-credit relationship
 - \circ Below a threshold, payment flow \to information \to credit provision
 - \circ Above a threshold, payment flow \to over-spending \to risky \to less credit provision

Evidence of Non-Monotone Payment-Credit Relationship

Go Back

OLS and **IV** Estimates

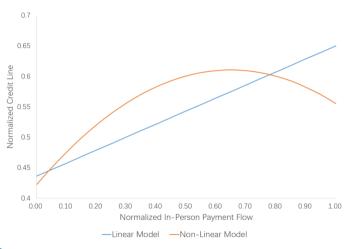
- An econometric framework with endogeneity Econometric Framework Setup
- OLS Estimate
 - Assume $0 < \alpha_1 < 1$, $0 < \beta_1 < 1$, and $\varepsilon_{i,t}^{EE} \perp \varphi_{i,t}$, then

$$\begin{split} \hat{\alpha}_{1}^{\textit{OLS}} &= \frac{\textit{Cov}(\textit{cl}_{i,t}, \textit{ipf}_{i,t})}{\textit{Var}(\textit{ipf}_{i,t})} \\ &= \alpha_{1} + \underbrace{\frac{1}{1 - \alpha_{1} \cdot \beta_{1}}}_{+} \cdot \underbrace{[\frac{\textit{Var}(\delta_{i} + \theta_{t} + \varepsilon_{i,t}^{\textit{OV}} + \varepsilon_{i,t}^{\textit{EE}})}{\textit{Var}(\textit{ipf}_{i,t})} \cdot \beta_{1}}_{+} + \underbrace{\frac{\textit{Cov}(\varepsilon_{i,t}^{\textit{OV}}, \varphi_{i,t})}{\textit{Var}(\textit{ipf}_{i,t})}}_{+ \text{ or } -}] \end{split}$$

IV Estimate

• Given
$$Cov(ipf_{i,t},bp_{c,t}) = \frac{1}{1-\alpha_1 \cdot \beta_1} \cdot Cov(\varphi_{i,t},bp_{c,t}) \neq 0$$

$$\hat{\alpha}_1^{IV} = \frac{Cov(cl_{i,t},bp_{c,t})}{Cov(ipf_{i,t},bp_{c,t})} = \alpha_1$$



Econometric Framework Setup

- Three Parties: Lender, Borrower i, Bike-Sharing Company
 - Credit Supply: $cl_{i,t} = \alpha_0 + \alpha_1 \cdot ipf_{i,t} + \delta_i + \theta_t + \varepsilon_{i,t}^{OV} + \varepsilon_{i,t}^{EE}$
 - In-Person Payment Decision: $ipf_{i,t} = \beta_0 + \beta_1 \cdot cl_{i,t} + \mu_i + \omega_t + \varphi_{i,t}$
 - \circ Exogenous Bike Placement Decision: $bp_{c,t}$
- Identifying Assumptions
 - Both $\varepsilon_{i,t} = \varepsilon_{i,t}^{OV} + \varepsilon_{i,t}^{EE}$ and $\varphi_{i,t}$ are orthogonal to 1, δ_i , θ_t , μ_i , ω_t
 - o $bp_{c,t}$ is a valid instrument for $ipf_{i,t}$:
 - $\mathsf{E}[(arepsilon_{i,t}^{OV} + arepsilon_{i,t}^{EE}) \cdot bp_{c,t}] = 0$
 - $\mathsf{E}[\varphi_{i,t} \cdot bp_{c,t}] \neq 0$

Non-Monotone Payment-Credit Relationship

Non-Monotone Payment-Credit Relationship: Regression

	Normalized Credit Line $_{i,t}$				
	(1)	(2)	(3)	(4)	
Normalized In-Person Payment Flow _{i,t}	0.214***	0.581***	0.040***	0.105***	
-,-	(0.033)	(0.076)	(0.006)	(0.013)	
(Normalized In-Person Payment Flow $_{i,t}$) ²		-0.448***		-0.075***	
		(0.064)		(0.009)	
Constant	0.436***	0.422***			
	(0.042)	(0.043)			
Individual FE	NO	NO	YES	YES	
Year-Month FE	NO	NO	YES	YES	
Clustered by City and Year-Month	YES	YES	YES	YES	
Observations	1,030,678	1,030,678	1,030,678	1,030,678	
Adjusted R^2	0.016	0.022	0.767	0.767	
Note: $p < 0.1; **p < 0.05; ***p < 0.01$					

Control for City × **Year-Month Fixed Effects**

	Credit Access _{i,t} log(Credit Line) _i					
	(1)	(2)	(3)	(4)		
Panel A.	Two-Stage Le	ast Squares				
$log(1 + In-Person Payment Flow)_{i,t}$	0.115***	0.108***	0.398***	0.418***		
	(0.004)	(0.004)	(0.016)	(0.019)		
Panel B. First Stage f	for $log(1+{\sf In-I})$	Person Paymen	t Flow) _{i,t}			
Bike $User_i \times log(Bike\ Placement)_{c,t}$	0.209***	0.178***	0.166***	0.134***		
	(800.0)	(800.0)	(0.007)	(0.007)		
F-Statistic	772.9	476.0	503.2	343.0		
Adjusted <i>R</i> ²	0.168	0.190	0.147	0.173		
Panel C	. Ordinary Lea	st Squares				
$log(1 + In-Person Payment Flow)_{i,t}$	0.054***	0.047***	0.147***	0.121***		
	(0.001)	(0.001)	(0.004)	(0.004)		
Adjusted R ²	0.193	0.245	0.181	0.363		
City × Year-Month FE	YES	YES	YES	YES		
Controls Individual Characteristics	NO	YES	NO	YES		
Clustered by City and Year-Month	YES	YES	YES	YES		
Sample	Full Sample	Full Sample	Has Credit	Has Credit		
Observations	1,238,309	664,727	779,283	440,418		
Note:		*p < 0.1;	**p < 0.05;	***p < 0.01		

In-Person Payment Flow and Future Credit Provision

	(Credit Access _{i,}	т	log	g(Credit Line)	i,T
	t+1	t+2	t + 3	t+1	t+2	t+3
	(1)	(2)	(3)	(4)	(5)	(6)
	Panel A.	Two-Stage Lea	ast Squares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.088***	0.085***	0.083***	0.250***	0.242***	0.235***
	(0.023)	(0.024)	(0.024)	(0.071)	(0.069)	(0.064)
Panel B	. First Stage f	or $log(1+{\sf In-F}$	Person Paymen	t Flow) _{i,t}		
$log(Bike\ Placement)_{c,t}$	0.041***	0.042***	0.042***	0.048***	0.048***	0.049***
-,	(0.011)	(0.011)	(0.011)	(0.012)	(0.013)	(0.013)
F-Statistic	15.4	15.1	15.4	15.0	14.6	15.0
Adjusted R^2	0.552	0.553	0.554	0.523	0.522	0.521
	Panel C.	Ordinary Leas	st Squares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.008***	0.007***	0.006***	0.025***	0.026***	0.027***
	(0.001)	(0.001)	(0.001)	(0.003)	(0.003)	(0.003)
Adjusted R ²	0.743	0.750	0.757	0.837	0.839	0.841
Individual FE	YES	YES	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Full Sample	Has Credit	Has Credit	Has Credit
Observations	1,199,746	1,161,435	1,123,295	775,512	763,560	750,694
Note:				*p < 0.1;	**p < 0.05;	***p < 0.01

Go Back

Control for Past In-Person Payment Flow

		Credit Access _i	t	lo) _{i,t}	
	(1)	(2)	(3)	(4)	(5)	(6)
I	Panel A. Two-	Stage Least Sq	uares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.139***	0.154***	0.157***	0.388***	0.457***	0.531**
	(0.038)	(0.048)	(0.056)	(0.129)	(0.167)	(0.204)
Panel B. Firs	t Stage for <i>log</i>	(1 + In-Person	Payment Flow	v) _{i,t}		
$log(Bike Placement)_{c,t}$	0.024***	0.019***	0.016***	0.027***	0.022***	0.018***
	(0.006)	(0.005)	(0.005)	(0.007)	(0.006)	(0.005)
F-Statistic	16.7	14.0	11.0	16.4	14.5	12.3
Adjusted R ²	0.636	0.647	0.651	0.596	0.605	0.608
	Panel C. Ordi	nary Least Squ	iares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.007***	0.006***	0.006***	0.015***	0.012***	0.010***
	(0.001)	(0.001)	(0.001)	(0.002)	(0.002)	(0.002)
Adjusted R ²	0.743	0.751	0.759	0.837	0.840	0.842
Controls $log(1 + In-Person Payment Flow)_{i,t-1}$	YES	YES	YES	YES	YES	YES
Controls $log(1 + In-Person Payment Flow)_{i,t-2}$	NO	YES	YES	NO	YES	YES
Controls $log(1 + In-Person Payment Flow)_{i,t-3}$	NO	NO	YES	NO	NO	YES
Individual FE	YES	YES	YES	YES	YES	YES
Year-Month FE	YES	YES	YES	YES	YES	YES
Clustered by City and Year-Month	YES	YES	YES	YES	YES	YES
Sample	Full Sample	Full Sample	Full Sample	Has Credit	Has Credit	Has Credit
Observations	1,199,825	1,161,573	1,123,548	775,601	763,711	750,940

p* < 0.1; *p* < 0.05; ****p* < 0.01

Control for Bike Usage

	Credit	Access _{i,t}	log(Cre	dit Line) _{i,t}				
	(1)	(2)	(3)	(4)				
Panel A. Two-Stage Least Squares								
$log(1 + In-Person Payment Flow)_{i,t}$	0.098***	0.097***	0.329***	0.329***				
	(0.030)	(0.030)	(0.112)	(0.112)				
$log(1 + Measure of Bike Usage)_{i,t}$	-0.034**	-0.028**	-0.112**	-0.094**				
	(0.015)	(0.012)	(0.048)	(0.041)				
Panel B. First	Stage for log(1	+ In-Person Payme	ent Flow) _{i,t}					
$log(Bike\ Placement)_{c,t}$	0.034***	0.034***	0.036***	0.036***				
	(0.010)	(0.010)	(0.011)	(0.011)				
$log(1 + Measure of Bike Usage)_{i,t}$	0.497***	0.391***	0.408***	0.324***				
	(0.022)	(0.030)	(0.021)	(0.027)				
F-Statistic	11.2	11.2	10.2	10.2				
Adjusted R ²	0.554	0.554	0.530	0.529				
F	Panel C. Ordinar	y Least Squares						
$log(1 + In-Person Payment Flow)_{i,t}$	0.010***	0.010***	0.021***	0.022***				
	(0.001)	(0.001)	(0.003)	(0.003)				
$log(1 + Measure of Bike Usage)_{i,t}$	0.010***	0.007***	0.015***	0.007*				
	(0.002)	(0.001)	(0.005)	(0.004)				
Adjusted R ²	0.740	0.740	0.836	0.836				
Measure of Bike Usage	# Bike Rides	Riding Distance	# Bike Rides	Riding Distance				
Individual FE	YES	YES	YES	YES				
Year-Month FE	YES	YES	YES	YES				
Clustered by City and Year-Month	YES	YES	YES	YES				
Sample	Full Sample	Full Sample	Has Credit	Has Credit				
Observations	1,238,309	1,238,309	779,283	779,283				
Note: $p < 0.1; **p < 0.05; ***p < 0.01$								

Control for Online Payments

	Credit	Access _{i,t}	$log(Credit Line)_{i,t}$		
	(1)	(2)	(3)	(4)	
	Panel A. Tw	o-Stage Least Squares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.086***	0.085***	0.280***	0.277***	
	(0.023)	(0.023)	(0.085)	(0.082)	
$log(1 + Measure of Online Payment)_{i,t}$	-0.009	-0.028	-0.037*	-0.107*	
	(0.006)	(0.017)	(0.021)	(0.054)	
P	anel B. First Stage for I	og(1+ In-Person Paymen	t Flow) _{i,t}		
$log(Bike\ Placement)_{c,t}$	0.041***	0.042***	0.043***	0.044***	
	(0.010)	(0.010)	(0.012)	(0.012)	
$log(1 + Measure of Online Payment)_{i,t}$	0.260***	0.716***	0.246***	0.649***	
	(0.007)	(0.015)	(800.0)	(0.018)	
F-Statistic	16.0	16.2	14.0	14.3	
Adjusted R ²	0.572	0.574	0.544	0.545	
	Panel C. Or	rdinary Least Squares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.008***	0.008***	0.018***	0.018***	
	(0.001)	(0.001)	(0.002)	(0.002)	
$log(1 + Measure of Online Payment)_{i,t}$	0.011***	0.027***	0.027***	0.061***	
	(0.001)	(0.002)	(0.003)	(0.007)	
Adjusted R ²	0.742	0.742	0.837	0.836	
Measure of Online Payment	Online Payment Flow	# Online Transactions	Online Payment Flow	# Online Transactions	
Individual FE	YES	YES	YES	YES	
Year-Month FE	YES	YES	YES	YES	
Clustered by City and Year-Month	YES	YES	YES	YES	
Sample	Full Sample	Full Sample	Has Credit	Has Credit	
Observations	1,238,309	1,238,309	779,283	779,283	
Note:			*p < 0.1; *	**p < 0.05; ***p < 0.01	

Setup of the Illustrative Example

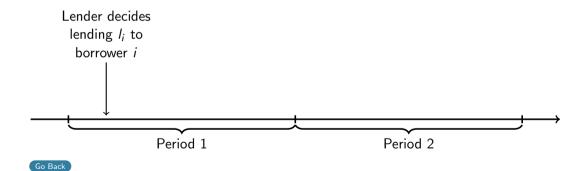
- There are a monopolistic lender and a continuum of borrowers
- Type of borrower $i: \theta_i \sim U[0,1]$
- Lender's expected profit of lending l_i to borrower i, given θ_i

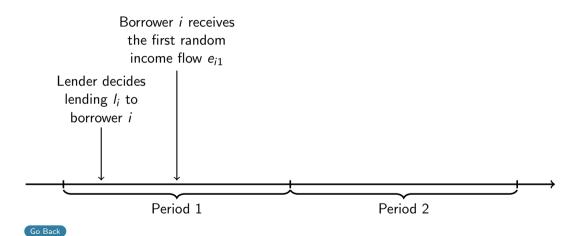
$$\pi_i(\theta_i, l_i) = \begin{cases} \theta_i + 2 \cdot \theta_i \cdot l_i - l_i^2 - 1 & \text{, if } l_i > 0 \\ 0 & \text{, if } l_i = 0 \end{cases}$$

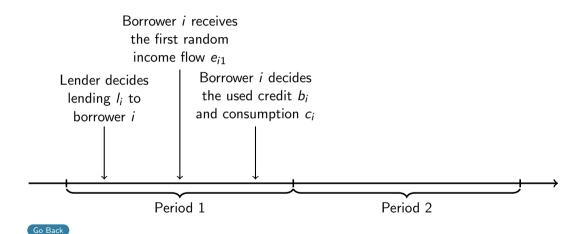
- Properties of the expected profit function
 - Fix credit line l_i , $\pi_i(\theta_i, l_i)$ increases with borrower type θ_i
 - Fix θ_i , \exists optimal credit line $I^*(\theta_i)$ that maximizes $\pi_i(\theta_i, I_i)$
 - If optimal credit line $I^*(\theta_i)$ is non-zero, $I^*(\theta_i)$ increases with θ_i
- When the lender only knows the type distribution of a group, it will lend the same to everyone if expected profit is positive

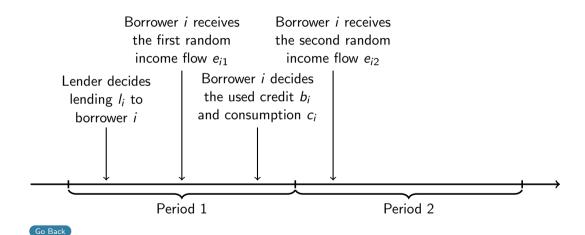
Age and Payment-Credit Relationship

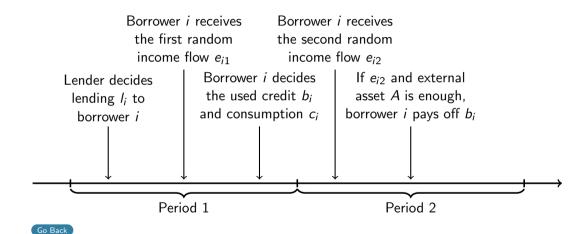
	Credit	Access _{i,t}	log(Credit Line) _{i,t}		
	(1)	(2)	(3)	(4)	
	Panel A. Tv	vo-Stage Least Squares			
$log(1 + In-Person Payment Flow)_{i,t}$	0.124***	0.047**	0.440***	0.176**	
	(0.041)	(0.020)	(0.177)	(0.065)	
Pai	nel B. First Stage for	log(1 + In-Person Payme	ent Flow) _{i,t}		
$log(Bike\ Placement)_{c,t}$	0.032***	0.049***	0.030***	0.054***	
	(0.010)	(0.012)	(0.011)	(0.013)	
F-Statistic	9.7	17.8	7.0	16.6	
Adjusted R ²	0.552	0.539	0.559	0.483	
Individual FE	YES	YES	YES	YES	
Year-Month FE	YES	YES	YES	YES	
Clustered by City and Year-Month	YES	YES	YES	YES	
Sample	Full Sample	Full Sample	Has Credit	Has Credit	
Subsample	Older than Median	Younger than Median	Older than Median	Younger than Median	
Observations	577,711	654,823	335,670	443,402	

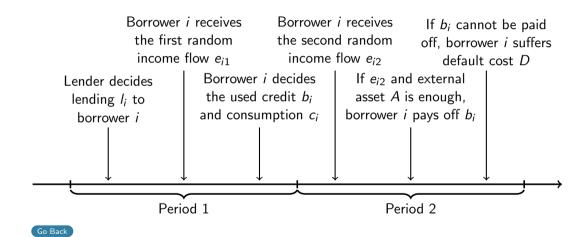

Note:


*p < 0.1; **p < 0.05; ***p < 0.01






Go Back



Random Income Flow

• Income flow of borrow *i* in period t = 1, 2 is determined by:

$$e_{it} = X_i \beta + y_i + \epsilon_{it}$$

where

- \circ X_i is a vector of observant characteristics of borrower i
- \circ y_i is an unobservant type of borrower i
 - We assume $y_i \in \mathcal{N}(0, \sigma_v^2)$
 - The density function is $g(y) = \frac{1}{\sigma_y \sqrt{2\pi}} e^{-y^2/2\sigma_y^2}$
- o ϵ_{it} is an unobservant shock to borrower i in period t
 - We assume idiosyncratic shock $\epsilon_{it} \in \mathcal{N}(0, \sigma_{\epsilon}^2)$ and $\epsilon_{it} \perp \!\!\! \perp y_i$
 - The density function is $f(\epsilon) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\epsilon^2/2\sigma_{\epsilon}^2}$

Lender's Problem

- In period t = 1, the lender decides to offer a credit line of l_i to borrower i, and charges a unit fee of R for used credit b_i . In the digital payment era, we assume all the consumption are paid with digital money, and the lender observes borrower i's consumption c_i
- In period t = 2, the lender suffers a loss of the credit line amount l_i if the borrower i defaults
- The lender choose optimal credit line l_i to maximize its profit

$$\max_{l_i} R \cdot b_i - \mathsf{E}[\mathbb{1}_i^D | X_i, b_i, c_i; \beta, R, A] \cdot I_i$$

where $\mathbb{1}_i^D$ is a dummy variable indicating whether borrower i defaults in period t=2

Borrower i's Problem

- In period t = 1, the borrower i receives the random income flow e_{i1} , knows about the credit line available to her l_i , decides the amount of credit she would like to use b_i , and make the consumption c_i
 - We assume the borrower is hand to mouth in period t = 1, and the consumption is $c_i = e_{i1} + (1 R) \cdot b_i$
- In period t = 2, borrower i receives the random income flow e_{i2} , and tries to pay off the credit balance b_i with the income and an external iliquid asset A. If the balance cannot be paid off, borrower i defaults and suffers a default cost D
- Borrower i is risk-neutral and discounts future cash flows, she chooses optimal used credit b_i to maximize the utility

$$\max_{b_i} c_i - \rho \cdot \mathsf{E}[\mathbb{1}_i^D | X_i, b_i, c_i; \beta, R, A] \cdot D - \rho \cdot (1 - \mathsf{E}[\mathbb{1}_i^D | X_i, b_i, c_i; \beta, R, A]) \cdot b_i$$

such that

$$0 \le b_i \le l_i$$

First Order Conditions

FOC of the lender's problem

$$R \cdot \frac{\partial b_i}{\partial l_i} - \Phi(\frac{b_i - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}}) - \phi(\frac{b_i - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}}) \cdot \frac{l_i}{\sqrt{2}\sigma_{\epsilon}} \cdot \frac{\partial b_i}{\partial l_i} = 0$$

• FOC of the borrower *i*'s problem

$$(1-R) - \phi(\frac{b_i - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}}) \cdot \frac{\rho \cdot (D - b_i)}{\sqrt{2}\sigma_{\epsilon}} - \rho \cdot [1 - \Phi(\frac{b_i - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}})] = 0$$

Go Back

Estimation Steps and Identification

- Calibrate credit usage fee R=0.03 and discounting parameter ho=0.9
- Assume borrower i has fully shifted from cash to digital money for consumption when her credit line stops increasing
 - Assume that in these months, $c_i = e_{i1} + (1 R) \cdot b_i$ holds
 - Back up monthly income with the consumption and used credit
 - o Assume monthly income is determined by $\emph{e}_{\emph{i}1} = \emph{X}_{\emph{i}} \emph{\beta} + \emph{y}_{\emph{i}} + \emph{\epsilon}_{\emph{i}1}$
 - o The variations in monthly income help us to estimate σ_ϵ
 - Use the average monthly values as the observed c_i , b_i and e_{i1} respectively
- Estimate the parameters β and σ_v with a regression
 - Run the OLS regression: $e_{i1} = X_i\beta + y_i + \epsilon_{i1}$
 - \circ Let observables X_i include gender, education, age, and city
- Estimate A by using lender's FOC as the moment condition
 - Assume lender uses heuristics to predict used credit: $b_i = \lambda \cdot l_i$
- Estimate D by using borrower's FOC as the moment condition

Expectation of Default

• When lender knows borrower i's consumption c_i (Digital Money User) Derivation

$$E[\mathbb{1}_{i}^{D}|X_{i},b_{i},c_{i};\beta,R,A] = \Phi(\frac{b_{i}-A-e_{i1}}{\sqrt{2}\sigma_{\epsilon}})$$

$$= E[\mathbb{1}(X_{i}\beta+y_{i}+\epsilon_{i1}-\epsilon_{i1}+\epsilon_{i2}+A-b_{i}<0)|X_{i},b_{i},c_{i};\beta,R,A]$$

$$= \int_{-\infty}^{+\infty} \mathbb{1}(\epsilon_{i2}-\epsilon_{i1}< b_{i}-A-e_{i1}|b_{i},e_{i1})f(\epsilon_{i1})f(\epsilon_{i2})d\epsilon_{i1}d\epsilon_{i2}$$

• When lender doesn't know consumption c_i (New Digital Money Adopter) Derivation

$$E[\mathbb{1}_{i}^{D}|X_{i},b_{i};\beta,R,A] = \Phi(\frac{b_{i}-A-X_{i}\beta}{\sqrt{\sigma_{\epsilon}^{2}+\sigma_{y}^{2}}})$$

$$= E[\mathbb{1}(X_{i}\beta+y_{i}+\epsilon_{i2}+A-b_{i}<0)|X_{i},b_{i};\beta,R,A]$$

$$= \int_{-\infty}^{+\infty} \mathbb{1}(y_{i}+\epsilon_{i2}< b_{i}-A-X_{i}\beta|X_{i},b_{i};\beta)g(y)f(\epsilon_{i2})dyd\epsilon_{i2}$$

Expectation of Borrower i's Default

• When the agent knows borrower i's consumption c_i

$$E[1_{i}^{D}|X_{i}, b_{i}, c_{i}; \beta, R, A]$$

$$= E[1(e_{i2} + A - b_{i} < 0)|X_{i}, b_{i}, c_{i}; \beta, R, A]$$

$$= E[1(X_{i}\beta + y_{i} + \epsilon_{i2} + A - b_{i} < 0)|X_{i}, b_{i}, c_{i}; \beta, R, A]$$

$$= E[1(X_{i}\beta + y_{i} + \epsilon_{i1} - \epsilon_{i1} + \epsilon_{i2} + A - b_{i} < 0)|X_{i}, b_{i}, c_{i}; \beta, R, A]$$

$$= E[1(e_{i1} - \epsilon_{i1} + \epsilon_{i2} + A - b_{i} < 0)|X_{i}, b_{i}, c_{i}; \beta, R, A]$$

$$= E[1(\epsilon_{i2} - \epsilon_{i1} < b_{i} - A - e_{i1})|b_{i}, e_{i1}]$$

$$= \int_{-\infty}^{+\infty} 1(\epsilon_{i2} - \epsilon_{i1} < b_{i} - A - e_{i1}|b_{i}, e_{i1})f(\epsilon_{i1})f(\epsilon_{i2})d\epsilon_{i1}d\epsilon_{i2}$$

$$= \Phi(\frac{b_{i} - A - e_{i1}}{\sqrt{2}\sigma_{\epsilon}})$$

Expectation of Borrower i's Default

- When the agent doesn't know borrower i's consumption c_i
 - E.g. when the borrower makes consumption with cash instead of digital money, the lender does not know this information

$$\begin{split} & \mathsf{E}[\mathbb{1}_{i}^{D}|X_{i},b_{i};\beta,R,A] \\ & = \mathsf{E}[\mathbb{1}(e_{i2}+A-b_{i}<0)|X_{i},b_{i};\beta,R,A] \\ & = \mathsf{E}[\mathbb{1}(X_{i}\beta+y_{i}+\epsilon_{i2}+A-b_{i}<0)|X_{i},b_{i};\beta,R,A] \\ & = \mathsf{E}[\mathbb{1}(y_{i}+\epsilon_{i2}< b_{i}-A-X_{i}\beta)|X_{i},b_{i};\beta] \\ & = \int_{-\infty}^{+\infty} \mathbb{1}(y_{i}+\epsilon_{i2}< b_{i}-A-X_{i}\beta|X_{i},b_{i};\beta)g(y)f(\epsilon_{i2})dyd\epsilon_{i2} \\ & = \Phi(\frac{b_{i}-A-X_{i}\beta}{\sqrt{\sigma_{\epsilon}^{2}+\sigma_{y}^{2}}}) \end{split}$$

Estimation Specifications

- Data cleaning
 - Consumption and used credit are winsorized at 5% and 95%
 - The months with zero consumption are dropped
- OLS regression specification

$$\begin{aligned} e_{i1} &= \beta_0 + \beta_{\textit{male}} \cdot \mathbb{1}_i^{\textit{male}} + \sum_{\textit{edu} \in \textit{U}} \beta_{\textit{edu}} \cdot \mathbb{1}_i^{\textit{edu}} \\ &+ \sum_{k \in \textit{K}} \beta_k \cdot \mathbb{1}_i^{k-5 < \textit{age} \leq k} + \sum_{\textit{city} \in \textit{C}} \beta_{\textit{city}} \cdot \mathbb{1}_i^{\textit{city}} + u_i \end{aligned}$$

where $U = \{ \text{Below College}, \text{Undergraduate}, \text{Graduate} \}$, $K = \{1930, 1935, ..., 2010\}$, C include 340 unique cities in China, and error term $u_i = y_i + \epsilon_{i1}$, thus $u_i \in \mathcal{N}(0, \sigma_y^2 + \sigma_\epsilon^2)$

Distribution of Observed Variables

	N	Mean	Std	Min	p25	Median	p75	Max
c_i	38,276	1,595.1	2,049.9	0.0	134.4	715.5	2,210.5	7,606.7
b_i	38,276	487.7	732.9	0.0	0.0	56.3	731.0	2,377.8
e_{i1}	38,276	1,122.0	1,665.8	0.0	48.8	344.2	1,431.9	7,606.7
I_i	38,276	7,145.5	10,256.8	0.0	0.0	3,000.0	10,000.0	61,000.0

Go Back

Distributional Effects

• The payment information leads to better financial inclusion

	$\Delta log(\operatorname{Credit} \operatorname{Line}_i), \%$ (1)	$\Delta log(Consumer\ Welfare_i), \%$ (2)	$\Delta log(\text{Lender Profit}_i), \%$ (3)	$\Delta log(Annualized Default Rate_i), \%$ (4)
Low Education;	1.558**	0.036***	0.708***	0.007**
	(0.786)	(0.011)	(0.222)	(0.003)
Older than Median;	1.164**	0.027***	0.392***	-0.001
	(0.530)	(0.007)	(0.150)	(0.002)
Male _i	1.326***	0.009	0.128	-0.0003
	(0.493)	(0.007)	(0.139)	(0.002)
City FE	YES	YES	YES	YES
Observations	38,008	38,008	38,008	38,008
R^2	0.031	0.006	0.009	0.007

Note:

*p < 0.1; **p < 0.05; ***p < 0.01

