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Abstract

Measures of the severity of macroeconomic scenarios have been widely
used in the literature, but a consistent methodology for their calculation
has not been developed yet. Against this background, we provide a gen-
eral method for calculating the joint probability of observing a macroe-
conomic scenario, which can be applied to a wide variety of structural
models. By doing so, we can attach probabilities to scenarios produced
with multidimensional economic models to compare their severity and
plausibility. We apply our methodology to the 2016 and 2018 EBA stress
test scenarios and we provide also reverse stress tests applications. Our
results show that for the Italian economy both the 2016 and 2018 EBA
scenarios are unlikely, especially the 2016 one. The reverse stress tests
allow us to identify the key variables that affect our probabilities.
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1 Introduction

Stress tests are procedures for assessing the potential impact on banks’ bal-
ance sheet of certain risks, typically financial and macroeconomic shocks. The
assessment of such risks is a complex task which requires analyzing the in-
teractions between the financial system and the real economy by means of
macro-financial models in order to identify latent fragilities. These types of
tools can be usually used also to perform reverse stress test analysis. Reverse
stress tests, using the hierarchical structure of the models employed, are pro-
cedures that try to quantify how severe a scenario needs to be to bring a given
target variable (i.e. banks’ capital ratio) below or above a given threshold (for
example, a 6% Core Tier 1 ratio threshold). The severity of the scenario is
usually assessed looking at the marginal probability distribution of one vari-
able (for example, GDP) obtained by model simulations or by calculating an
aggregate index of a set of variables (loss functions). This approach is limited,
as it is not able to capture the complexity of the macroeconomic channels
affecting the banking system.

In order to create sufficient hypothetical stress on financial institutions, sce-
narios should be severe enough, but at the same time realistic. In other words,
when designing stress tests scenarios, an adequate level of severity must be
ensured (i.e. with a significant impact on banks) but not an unlikely one (i.e.
non-compatible with the economic structure as well as the history of a given
country). Selecting a severe but plausible scenario contributes to increasing
the ability of the macro stress tests to become a reliable early warning system.
An excessively severe scenario could produce too many false alarms (Henry
et al. (2013)). However, the literature still needs to better clarify how to
quantitatively assess the severity and the plausibility of a scenario.

Our paper offers a robust and unified framework for the estimation of i) the
probability of observing a given scenario and ii) the expected exogenous vari-
ables profile for reverse stress testing exercises. One advantage of our approach
is that it can be applied to any kind of structural dynamic model and for sce-
narios jointly defined by a set of variables over time (not just one variable).

Borio et al. (2014) argue that ”[...] rather than being part of the solution,
stress tests turned out to be part of the problem [...]”. In particular, he iden-
tifies two main shortcomings. First, the ”model” used to simulate financial
distress. They are generally large linear autoregressive models with several
dimensions and a high degree of complexity, such as the GVAR approach of
Olli et al. (2013) [8]. Despite its complexity, the GVAR lacks structural rela-
tionships, which prevents the computation of comprehensive probabilities (see
Section 2). Moreover, the assumption of linearity represents a limit. Several
approaches attempt to avoid the linearity assumption, as Kanas and Philip
(2018) [7] who use a non-parametric quantile regression and find that macro
variables nonlinearly affect the upper tail distribution (90% and 95% quantiles)
of non-performing loans (NPLs). They also find that default probabilities are
highly affected by the macro variables selected. The second shortcoming of
the existing models is the context in which the stress tests are run.

The theoretical framework underlying macro stress testing allows to assess
the impact of macro variables on banks’ balance sheet. However, usually the
focus is on macroeconomic shocks and how they affect banks’ solvency rather
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than on models that are able to capture the negative feedback loops between
banking sector and the rest of the economy.

To overcome the aforementioned limitations, we propose a way to associate
a number of macroeconomic variables along a time period (a scenario) to a
probability measure (scalar). To this end, we exploit a reduced form of the
Prometeia’s Quarterly Macro-econometric Model (Tomasini et al. 2018)[6].
The model includes the banking sector and its feedbacks to the other sectors
of the economy. Importantly, our approach does not eliminate the structural
relationships characterizing the original model.

It is worth noting that our structure works in two directions: from exogenous to
endogenous variables to determine scenario probabilities, and from endogenous
to exogenous variables to perform reverse stress tests. In this way, we are able
to combine the stressed profile of the endogenous variables with the most likely
dynamics of the exogenous variables. The intuition of our approach, explained
in detail in Section 2, is to track the evolution of the system and to collect all
the available empirical moments, such as variances and covariances between
variables in their contemporaneous, lagged, and leading versions. The goal is
to maintain the structural properties of the model and allow an accurate and
consistent estimation of the probability of a scenario, conditional on the joint
multivariate distribution of the model’s shocks. We apply this methodology
to assess the severity of the 2016 and 2018 EBA stress tests macroeconomic
scenarios.

As shown in section 3 the joint probability approach delivers the possibility
of a robust scenario severity determination by probability comparison. In our
application, we obtain that the 2018 and 2016 scenarios have a non zero joint
probability mass, respectively 0.50% and 0.15%, suggesting a less severe profile
for the 2018 EBA stress test exercise.

Our analysis resemble very closely the approaches found in literature as [3],
[4] looking for a formal and general approach for the design of macroeconomic
stress testing. With respect to the similar approach we prefer to stress the
theoretical content embodied into a structural macroeconomic model. We will
see in the following of the paper that this aspect will play a central role for
the probability determination.

We focus on the severity of the macroeconomic scenarios and we do not discuss
the specific effects of the macroeconomic shocks on the banking sector. Bar-
bieri et al. (2019) [1], using a Large Bayesian VAR model, which accounts for
potential spillover between the macroeconomy and the banking sector, propose
a model-based approach to assess Italian banks’ resiliency to adverse scenar-
ios. The paper is organized as follows. Section 2 discusses the methodology,
while Section 3 discusses the empirical application. Section 4 concludes.

2 The methodology

We begin by discussing the standard econometric techniques used in stress
testing exercises. If the models used to analyse alternative scenarios is a time
series model (VAR and its modifications), there is a limit to the number of
observations and time periods that the model can include to yield a non-zero
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probability. The increase in the number of dimensions (N) and time periods
(T ) of the model leads the joint probability for the random vector Yt ∈ RN ,
representing the endogenous vector of the simulated model, to converge to zero
very quickly. The reason is the (un)desidered Markov property of the model,
according to which the joint probability of the simulated scenario, represented
by the set of random vectors Y1, Y2, · · · , Yt, is given by the product of the
conditional probabilities:

P (Y ) = P (Y1, Y2, ..., Yt) = P (Yt|Yt−1) · · ·P (Y2|Y1) · · ·P (Y1) (1)

Alternatively, we could use a very simple statistical and structural model in
order to exploit the non-markovianity property of the data generation process.
The ingredients to build such a model are:

1. Use a structural model that provides a baseline and alternative stressed
scenarios. In the following, we discuss the case of a linear model, but
the methodology could be extended to nonlinear models as well.

2. Assume the joint distribution of the residuals. We use a multivariate
Gaussian distribution as a standard hypothesis.

3. Perform a set of deterministic cumulative shocks on the exogenous vari-
able and then collect cumulative multipliers given the effect of the shocks
on each endogenous variable.

4. Compute covariance matrices for the system for each time period of sim-
ulation and, given the multiplier matrices system (see below), determine
the covariance matrix for the whole scenario.

5. Identify a stress scenario for each endogenous variable of the system.

6. Define the tail of the marginal distribution of the endogenous variable
representing the preferences of the macro-prudential policy maker.

7. Evaluate the probability of the scenario as the multivariate joint distri-
bution of the endogenous variable scenario, given the tail specifications
(step 6) and the covariance matrix (step 4).

Formally, let us define the deviation between the shocked scenario Ys and
the baseline scenario Y0 as yst. The same applies for the exogenous variable
zst. The endogenous variable yit, i = 1, · · · , n and exogenous variable zjt, j =
1, · · · , p are stacked into Yt ∈ RN , Zt ∈ RP , respectively. The multiplier at
time t is mijt = yit

zjt
and Mt ∈ Rnxp, for t = 1, · · · , T is the respective vector.

We build the compact model by collecting each Mt in a matrix as follows:

M =


Mt 0 · · · 0
Mt+1 Mt · · · 0

...
. . . · · · 0

MT MT−1 · · · Mt

 .
Similarly, for the endogenous, exogenous and shock variables we have:
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Y =


Yt
Yt+1

...
YT

 ,Z =


Zt
Zt+1

...
ZT

 ,E =


Et
Et+1

...
ET

 . (2)

Then, we can build the compact system of equations1 as follows:

Y = MZ +E. (6)

Assuming first and second moments of the errors and the exogenous vari-
ables (σ2

ei , σeiej , σ
2
zi , σzizj ) and their Gaussian multivariate distributions (Et ∼

N (0,ΣE,t), Zt ∼ N (0,ΣZ,t)), we obtain:

Ξ =


Ξt Ξt,t+1 · · · Ξt,T

Ξt+1,t Ξt+1,t+1 · · · Ξt+1,T
...

. . . · · ·
...

ΞT,t ΞT,t+1 · · · ΞT

 (7)

Ξt =

[
ΣZt ΣZt,Et

ΣZt,Et ΣEt

]
,ΣZ =


σ2
z1 · · · σz1en
...

. . .
...

σznz1 · · · σ2
zn

 ,ΣE =


σ2
e1 · · · σe1en
...

. . .
...

σene1 · · · σ2
en

 .
(8)

With system (6) and covariance matrices (7) and (8) we arrive at the final
multivariate joint distributions:

Y ∼ N (0,M ′ΞM). (9)

Model 9 is able to replicate the original macroeconometric model and repre-
sents the general solution of the model as represented by a Montecarlo anal-
ysis. With model (9) we can measure the probability of the scenario Yk as

1We can see the resulting system as the simultaneous equations format (Canova 2007) of
a dynamic simultaneous system. In fact we can write a general macroeconomtric model as
a recursive system of simultanoues equations:

A0Yt+1 = A1Yt + BZt + Et. (3)

where A0 includes simultanoues relationships among system variables. After simple alge-
bra devoted to find the reduced form for the deviation from baseline representation of the
above system one get :

YT = ΓTy Yt +

T∑
i=0

Γi−1
y [ΓZZt+i + ΓEEt+i]. (4)

where Γy = A−1
0 A1, ΓZ = A−1

0 B and ΓE = A−1
0 . We will record the shocks in the matrices

Mi where not only impact and delayed effects of exogenous shocks are included but also the
dynamic effects included in ΓTYt. In this way we can define the multiplier

Yt+i
Zt

= Mi. (5)
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P (Yk ∈ Ȳ ). The tail of the multivariate Gaussian distribution is compared
with the policy maker’s preference set, Ȳ . For example, we can assume:

Ȳa = {y1t > a1, y2t > a2}

Ȳb = {y1t < a1, y2t < a2}

Ȳc = {y1t < a1, y2t > a2}

i.e. several combinations of the informative set defined as: (i) a right tail
(>), (ii) a left tail (<) and (iii) an internal interval (<<) set. In this way, it
is possible to estimate a large combination of conditional probabilities to the
preferences of the policy maker. For example, in stress tests the probability
along the GDP dimension is measured at the left tail (∞ < Gdp < a) and
that along the unemployment rate at the right tail (∞ > UR > a), to then
combine them jointly.

The main question is: why does not the probability converge to zero given the
high dimension of the probabilistic system? The answer is simple: the system
is not Markovian, that is the joint probability is not independent because the
model is a structural one, and the whole history of the system is considered
(i.e. the entire solution of the dynamic model is acknowledged). By doing so,
we do not lose the data required by the structural relationships of the system,
keeping the necessary information in the global covariance matrix.

Figure 1: Matrix covariance matrix eigenvalue inspection (Log)

Source: Prometeia calculations
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The presence of interdependence is equivalent to the presence in the system
of a subset of common factors. By looking at the covariance matrix, we can
understand why the probability does not converge to zero. The multivariate
Gaussian distribution is:

P (x) =

∫
me−1/2x′Σ−1xdx =

∫
me
−1/2

∑
i

1
λi
e2i yidyi (10)

where the right hand side is obtained after an eigenvalue decomposition of the
covariance matrix Σ and where λn are the eigenvalues and m is 1√

(2π)k|Σ|
. If

there are common factors, we should observe large eigenvalues of the covariance
matrix that allow the probability to be non-zero. High values of the eigenvalues
are a condition for a non-vanishing probability mass. In Figure 3, we show
the distribution of eigenvalues by variables and periods. The structure of the
model is generated when the first 40-60 variables trigger the rest of the system
dynamics and are interrelated. Moreover, we can see that the role of the main
components expands over time.

Finally, our framework allows us to determine reverse stress testing analyt-
ically. We can solve for the exogenous variables vector Z from system 6 to
get:

E(Zk|Yk) = (M ′M)−1M ′Yk. (11)

System 11 is the expected conditional exogenous profile given Yk, i.e. E(Zk|Yk).
It allows to identify the most likely path of the exogenous variable. If the orig-
inal macroeconometric model is well identified, the unicity of the solution for
the system 11 is ensured.

In this section we provide a general model to calculate the probability of
a macroeconomic scenario based on the properties of the macroeconometric
model. The assumptions are simple but still too general. One of the extensions
that is currently planned to be implemented, will be the determination of
heterogeneous multipliers depending on the phases of the business cycle in
which you can perform stress tests. In section 4 we present the model that
allows us to evaluate the probability of scenarios conditioned to the baseline,
i.e. to consider an skewed distribution of shocks based on cyclical conditions
and to avoid the assumption of homogeneous multipliers. Our preliminary
inspection supports the evidence of skewed distributions of exogenous shocks.

3 Applications

In this section, we show an application of the methodology described in Sec-
tion 2. For our analysis we rely on Prometeia’s Quarterly Macroeconometric
Model (Tomasini et al. 2018)[6]. The latter is a large-scale estimated vector
error correction model for the Italian economy. It includes several sectors, in-
cluding firms, households and credit sector at the macroeconomic level. As a
practical application of our approach, we analyze a set of endogenous variables
(GDP, unemployment rate and the BTP-Bund 10y spread) resulting from the
inclusion of EBA shocks in the Prometeia’s macroeconometric model as shown
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in Figure 2. In particular, we show the historical series and the forecasted fan
chart resulting from our stochastic simulations.

Then, we compare the fan chart with the 2018 EBA scenario. We can observe a
severe fall of GDP and an increase, albeit less severe, in the unemployment rate
together with an increase of the BTP-Bund spread. If we calculate marginal
probabilities, we get a value of 28.7% for the BTP-Bund spread, 35.2% for the
unemployment rate and 6.8% for GDP. The corresponding probabilities for
the 2016 EBA scenario the are 22.6%, 30.6% and 3.2%, respectively. However,
if we include housing prices, we find a marginal probability of the variable
close to zero, suggesting that its profile is implausible.

Figure 2: EBA 2018 endogenous variables

(a) GDP, Probability 3.1% (% dev. from baseline) (b) Unemployment Rate Probability 30.3% (% dev. from base-
line)

(c) SPREAD BTP-Bund, Probability 22.3% (abs dev.
from baseline)

(d) Dwellings Price, Probability 0%: (% dev. from baseline)

Source: Prometeia calculations on EBA data

We use the baseline forecast of Prometeia Associazione and we perform a
number of selected shocks on exogenous and estimated errors. Then, we collect
the multipliers and the distribution of the estimated errors and exogenous
variables. To perform the probability assessment we use the reduced form (6)
of the model, thereby preserving the structural relationships of the original
model. This property is also achieved by calculating ex-post the dynamic
multipliers.

With equation (9) we obtain the joint distribution for the endogenous vari-
ables. The dimension of the reduced system is given by N = 121 endogenous
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variables, including the main variables of the macroeconometric model (GDP,
unemployment rate, inflation, consumption, aggregate wealth, etc.) and a set
of bank interest rates and credit indicators. The number of exogenous vari-
ables is P = 22, including the exogenous shocks to the main endogenous and
exogenous variables. The model is simulated for 12 quarters and therefore
the global matrix of multipliers (M) has a dimension of 1452× 276, while the
covariance matrix MΣM ′ of 1452× 1452.

Figure 3: EBA 2018 endogenous variables

(a) GDP (% dev. from baseline) (b) FTSE MIB (% dev. from baseline)

(c) US GDP (% dev. from baseline) (d) EU GDP (% dev. from baseline)

(e) SPREAD BTP-Bund (abs dev. from
baseline)

Source: Prometeia calculations on EBA data

In order to calculate the probability of the scenario, we collect data on the
exogenous variables included in the EBA scenarios.

As a first step, we apply the probability to both the 2018 and 2016 EBA
scenarios. We manipulate the data considering quarterly frequencies and we
make a hypothesis on all the variables not explicitly indicated by the EBA,
but that are necessary for the simulation of our model.

The profile of the main endogenous and exogenous variables for the 2018 EBA
scenario are shown in Figure 3. The adverse shock on the Italian economy is
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triggered by a negative and persistent shock to the euro area GDP (exclud-
ing Italy) (-7.8%), a less severe slowdown of the US economy (-3.8%) and a
deterioration of asset prices (initially -30% but slowly recovering).

As for the whole set of endogenous variables, we initially set a preference
vector for all variables on the left tail. The probability is 0.201% and 0.069%
for the 2018 and 2016 EBA scenario, respectively, indicating that the latter is
the most severe from a quantitative point of view.

In order to get a more precise probability for the scenarios, we select a subset
of variables as indicated in Figure 4. In particular, we consider a vector with
different preferences. We have an adverse preference on the left tail for oil
price, exchange rates and GDP. For the unemployment rate, the BTP-Bund
10y spread we have adverse preference on the right tail. In this case, the 2018
EBA scenario yields a probability of 0.503%, while the 2016 EBA scenario
a probability of 0.148%. Although the 2016 EBA scenario is still the most
severe, the difference between the two scenarios is small.

Figure 4: Scenario preference configuration

Source: Prometeia calculations

We can also detect which variable causes a decrease in probabilities. When we
include the price of dwellings (Figure 2d) we obtain a joint probability of 0%,
as expected from preliminary inspection of marginal distribution. Therefore,
dwelling prices are the most implausible endogenous variables, as it is assumed
to persistently deviate from its baseline value to -20%. From an empirical point
of view, Italy has not experienced such shock in a 3 year time period. To better
appreciate the plausibility of the scenario, we perform a second application:
the reverse stress test.

We use the 2018 EBA endogenous set of variables (Figure 3) and fit it to our
model specification. We use system (11) to obtain the exogenous profile with
the higher conditional expected value consistent with our model. The adverse
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additional shock profile of the exogenous variables are shown in Figure (5).
They consist in an initial adverse shock to the oil price, the euro area GDP and
the US economy. Unemployment rate starts growing, while the ECB increases
its policy rate. The BTP-Bund spread increases over the entire period. It is
worth noting that neither for GDP nor for equity prices an additional shock
is required. Overall, these results allow us to quantify the additional shocks
needed to replicate the EBA scenario given the Prometeia macroeconometric
model. They also help to identify how the EBA scenario can be improved to
make it more plausible.

Figure 5: Distribution of the sub-periods by quartile of selected macroeconomic in-
dicators % dev from baseline

(a) 10y BTP-Bund Spread (b) BUND 10y rate

(c) Unemployment rate (d) Employment rate

(e) Public expenditure (f) Compensation of employees per capita

(g) Index of prices of residential dwellings (h) FTSE-MIB

(i) EU GDP (j) USA GDP

(k) Petroleum Brent: $ per barrel (l) GDP Italy

Source: Prometeia Calculations based on EBA data
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4 Extensions: Conditioning probability to the busi-
ness cycle phase

The method presented in the previous section assume a constant structure
of the joint probability distribution. In some sense, it is unsatisfactory as it
provides the same probability measure for a stress test scenario. It would be
preferable to perform stress testing exercises been conditioned to the actual
macroeconomic condition, with a more flexible model taking into account the
current macroeconomic conditions. A stress test implemented during a re-
cession could have a probability measure much higher than performed during
expansionary phases. We could consider several ways to complicate such model
and in this section we show the simplest extension: a two state multivariate
distribution. The goal is to measure the joint probability of a macroeconomic
scenario considering the positive and negative phases of the business cycle.

As the simplest example for an extension of model in section 2 we provide the
following two-states system:

Y =

{
M−Z +E− with probability p (negative output gap )

M+Z +E+ with probability (1− p) (positive output gap )

This model allows to perform conditional stress-tests into two possible states
depending on the phase of the business cycle. If the output-gap is negative
(positive) we can assume a skewed distribution of shocks. The same hypothesis
holds for the several endogenous variables with the heavier tail, depending on
the particular variable of the model. At the same time we could expect a non-
zero multiplier for exogenous shocks impacting during recessionary business
cycle phases. Formally, it translates into E(M−Z) = µz− > 0, E(E)− =
µe− > 0 and a log normal distribution for Y − ∼ log(N )(µz− + µe−,ΣE,t).
Figure 6 depicts the whole picture of the model for positive and negative
phases and the use of the prior distribution for the output-gap, weighting the
two multiplier sub-systems.

As a first numerical example, we consider the hypothesis in which the con-
ditional probability is obtained by keeping the estimated parameters of t he
model and the matrix of the multipliers, M− = M+ = M , constant between
the two states.

What we assume is the heterogeneity of the shocks obtained bootstrapping
the sample distribution of shocks in the two states, conditioned to the positive
or negative output-gap, i.e, considering the distributional moments of E+ and
E−.
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Figure 6: Conditional Probability distribution,

Figure 7: Output Gap distribution, Empirical (bars), Kernel (blue) and Gaussian
(black)

Source: Prometeia calculations

First of all, we estimate the kernel distribution as in figure 7 in order to
obtain the probability of a positive state of the macroeconomic cycle, namely
a positive output gap for the Italian economy. Then, we can calculate the
conditional probability of a particular scenario given the probabilities of the
negative and positive state, P (Y +) and P (Y −).

We can observe in the figure 8 that the simulated endogenous distributions has
a skewed shape and that it approximates a lognormal bivariate pdf. On top of
this distribution, we can calculate a transformation by shifting and logging the
original empirical distribution considered for each variable and time period2.

In this way, we can lead back to a normal multivariate distribution specific for
each of the two states.

Once we have obtained our normal multivariate distribution, we can apply the
same procedure presented in the previous sections. That is, we apply the EBA
2018 scenario as in section 2 for each to the two states. In this way we obtain
a scenario probability in the positive output-gap state of 0.003 per cent and
for the negative state of 8.4. This means that the 2018 EBA scenario is much
more likely during recessionary state of the economy, as expected.

2We fit a shifted log normal distribution per each variable belonging to the state of the
economy, ie. ySit ∼ logN (0, σ2

S,i,t, δS,i,t), S = +,−, i ∈ N, t ∈ T , where δS,i,t is the location
parameter.

13



Finally, applying the conditional probability calculation recursively during the
sampling period, we can obtain a dynamic probability of 2018 scenario condi-
tioned to the output-gap, as shown in figure 9. As expected, at the begin of
the Great Recession the likelihood of the scenario has designed for the 2018
stress-test exercise has increased. Recently, the probability value is lowering as
the macroeconomic conditions for the italian economy has improved in terms
of the output gap measure.

Figure 8: Pair of bivariate simulated distributions. Positive state. Original (1st
row) and transformed (2nd row) data. Transformation : log(X) + δ

(a) GDP vs SPREAD (b) GDP vs URD (c) SPREAD vs URD

(d) GDP vs SPREAD (e) GDP vs URD (f) SPREAD vs URD

Source: Prometeia calculations

Figure 9: 2018 EBA Scenario, conditional probabilities over time

Source: Prometeia calculations
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5 Conclusions

This article looks at the severity of the EBA shocks with respect to the macroe-
conomic scenario considered in past stress tests for Italian banks. To the best
of our knowledge, no standard analytical method exists in the literature to
measure the plausibility and severity of stress testing scenarios. We provide
a very simple analytical model, which allows a precise computation of the
probability of the scenario.

This approach, if performed together with reverse stress tests, is suitable for
the detection of exogenous variables that are not plausible. In this framework,
the macroeconomic scenario designed by the EBA in 2016 is more severe than
the 2018 one. Compared to the latter, our methodology allows us to obtain an
additional profile of exogenous variables from Prometeia’s macroeconometric
model, consistent with the profile of endogenous variables of the EBA. In this
context, a much severe shock on the BTP-Bund spread, unemployment rate
and the euro area GDP is necessary to induce the EBA scenario, indicating
that the latter potentially includes implausible variables.
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