BSLoss: a comprehensive measure for interconnectedness

Fink, Krüger, Meller and Wong

EBA London

25-26 November 2014

Discussion Iman van Lelyveld

DeNederlandscheBank

EUROSYSTEEM

▲□▶ ▲御▶ ▲콜▶ ▲콜▶ - 콜 - 이익은

The views expressed do not necessarily reflect the views of De Nederlandsche Bank or European System of Central Banks.

Introduction

① Putting the paper in perspective

- Analysis
- Literature
- German banking

Introduction

① Putting the paper in perspective

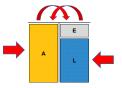
- Analysis
- Literature
- German banking
- Points to ponder
 - Loss realisation and shock transmission
 - Static versus dynamic
 - How does it compare?

Introduction

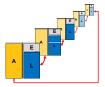
O Putting the paper in perspective

- Analysis
- Literature
- German banking
- Points to ponder
 - Loss realisation and shock transmission
 - Static versus dynamic
 - How does it compare?
- 3 Advertorial: networks with limited data

Analysis


30 second summary

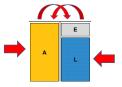
- Exogenous shocks affect bank(s) PD
- Counterparty PD affects a banks expected loss (EL)
- EL reduces value assets
- Once asset value < critical value = default


A completely incomplete historical overview

- Focus on asset side
- Domino mechanics

Upper (2011), van Lelyveld and Liedorp (2006)

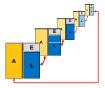
- Supersize: RAMSI Aikman et al. (2009)
- Liquidity Van den End (2008), Berger and Bouwman (2009)
- Overview Stress Testing BCBS (2013a,b)



- Endogenous networks Halaj and Kok (2014), van der Leij et al. (2014)
- Long intermediation chains

Adrian and Shin (2010)

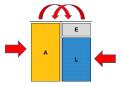
A completely incomplete historical overview


- Focus on *asset* side
- Domino mechanics
 Upper (2011), van Lelyveld and
 Liedorp (2006)

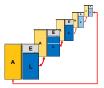
- Supersize: RAMSI Aikman et al. (2009)
- Liquidity

Van den End (2008), Berger and Bouwman (2009)

 Overview Stress Testing BCBS (2013a,b)

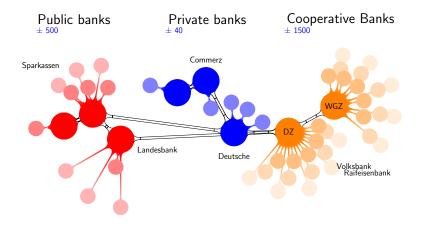

- Endogenous networks Halaj and Kok (2014), van der Leij et al. (2014)
- Long intermediation chains

Adrian and Shin (2010)


DeNederlandscheBank

A completely incomplete historical overview

- Focus on *asset* side
- Domino mechanics
 Upper (2011), van Lelyveld and
 Liedorp (2006)


- Supersize: RAMSI Aikman et al. (2009)
- Liquidity Van den End (2008), Berger and Bouwman (2009)
- Overview Stress Testing BCBS (2013a,b)

- Endogenous networks Halaj and Kok (2014), van der Leij et al. (2014)
- Long intermediation chains

Adrian and Shin (2010)

German Banking Sector

DeNederlandscheBank

Network structure

		Netherlands	Germany	Italy	UK
Description	Total number of banks Network density Average number of core banks Average core size	$100 \\ 8\% \\ \pm 15 \\ \pm 15\%$	$1800 \\ 0.4\% \\ \pm 45 \\ \pm 2.5\%$	${\pm 120 \ \pm 15\% \ \pm 30 \ \pm 25\% }$	176 3.2% 16 9.1%
Fit	Error frequency, as % of links Transition prob. core→core	29% 83%	12% 94%	42% 83%	47% NA*

Netherlands (in 't Veld and van Lelyveld, 2014), Germany (Craig and von Peter, 2014), Italy (Fricke and Lux, 2012), and the UK (Langfield et al., 2012).

うせん 神 ふかく 山 くらく

- $PD_j \uparrow \rightarrow LLA_i \uparrow \rightarrow TA_i \downarrow \rightarrow Tier1_i / RWA_i \downarrow \rightarrow PD_i \uparrow$
- This is in expectation

- $PD_j \uparrow \rightarrow LLA_i \uparrow \rightarrow TA_i \downarrow \rightarrow Tier1_i / RWA_i \downarrow \rightarrow PD_i \uparrow$
- This is in expectation
- $Pr(default) = F(\alpha + \beta ln(CapRat) + \gamma X)$
 - X = efficiency, profitability, liquidity and size
 - Where is 1) sector and 2) (government) intervention or more generally (market) stress

- $PD_j \uparrow \rightarrow LLA_i \uparrow \rightarrow TA_i \downarrow \rightarrow Tier1_i / RWA_i \downarrow \rightarrow PD_i \uparrow$
- This is in expectation
- $Pr(default) = F(\alpha + \beta ln(CapRat) + \gamma X)$
 - X = efficiency, profitability, liquidity and size
 - Where is 1) sector and 2) (government) intervention or more generally (market) stress
- 2 Static versus dynamic
 - Structures change Squartini et al. (2013)

- $PD_j \uparrow \rightarrow LLA_i \uparrow \rightarrow TA_i \downarrow \rightarrow Tier1_i/RWA_i \downarrow \rightarrow PD_i \uparrow$
- This is in expectation
- $Pr(default) = F(\alpha + \beta ln(CapRat) + \gamma X)$
 - X = efficiency, profitability, liquidity and size
 - Where is 1) sector and 2) (government) intervention or more generally (market) stress
- **2** Static versus dynamic
 - Structures change Squartini et al. (2013)
 - Dynamic networks Halaj and Kok (2014), Bräuning et al. (2014)

- $PD_j \uparrow \rightarrow LLA_i \uparrow \rightarrow TA_i \downarrow \rightarrow Tier1_i/RWA_i \downarrow \rightarrow PD_i \uparrow$
- This is in expectation
- $Pr(default) = F(\alpha + \beta ln(CapRat) + \gamma X)$
 - $X=\mbox{efficiency, profitability, liquidity and size}$
 - Where is 1) sector and 2) (government) intervention or more generally (market) stress
- **2** Static versus dynamic
 - Structures change Squartini et al. (2013)
 - Dynamic networks Halaj and Kok (2014), Bräuning et al. (2014)
 - Agent based models

- $PD_j \uparrow \rightarrow LLA_i \uparrow \rightarrow TA_i \downarrow \rightarrow Tier1_i / RWA_i \downarrow \rightarrow PD_i \uparrow$
- This is in expectation
- $Pr(default) = F(\alpha + \beta ln(CapRat) + \gamma X)$
 - X = efficiency, profitability, liquidity and size
 - Where is 1) sector and 2) (government) intervention or more generally (market) stress
- **2** Static versus dynamic
 - Structures change Squartini et al. (2013)
 - Dynamic networks Halaj and Kok (2014), Bräuning et al. (2014)
 - Agent based models
- How does it compare?
 - Doesn't old style domino contagion give the same results? cf Upper and Worms (2004)

Advertorial: Networks with limited data

- BCBS Research Task Force (RTF) on Liquidity Stress Testing
- Networks
 - As many jurisdictions as possible.
 - Now 12 jurisdictions: BIS, Brazil, Canada, Denmark, France, Germany, Hungary, Korea, Mexico, Netherlands, UK, US
- 17 networks: payments, interbank, repo, CDS
- 6 algorithms: Anand et al. (2013), Baral and Fique (2012), Battiston et al. (2012), Drehmann and Tarashev (2013), Mastrandrea et al. (2014)

Thank you for your attention

References I

- ADRIAN, T. AND H. S. SHIN (2010): "The Changing Nature of Financial Intermediation and the Financial Crisis of 2007-09," New York Fed Working Paper, 439.
- AIKMAN, D., P. G. ALESSANDRI, B. EKLUND, P. GAI, S. KAPADIA, E. MARTIN, N. MORA, G. STERNE, AND M. WILLISON (2009): "Funding Liquidity Risk in a Quantitative Model of Systemic Stability," Bank of England Working Paper.
- ANAND, K., B. CRAIG, AND G. VON PETER (2013): "Filling in the Blanks : Interbank Linkages and Systemic Risk," Bundesbank Working Paper, 2/2014.
- BARAL, P. AND J. P. FIQUE (2012): "Estimation of Bilateral Exposures A Copula Approach," Mimeo.
- BATTISTON, S., M. PULIGA, R. KAUSHIK, P. TASCA, AND G. CALDARELLI (2012): "Debtrank: Too Central to Fail? Financial Networks, the Fed and Systemic Risk," *Scientific Reports*, 2.
- BCBS (2013a): "Liquidity stress testing: a survey of theory, empirics and current industry and supervisory practices," BCBS Working Paper, 24.
- (2013b): "Literature review of factors relating to liquidity stress: extended version," BCBS Working Paper, 25.
- BERGER, A. AND C. BOUWMAN (2009): "Bank Liquidity Creation," Review of Financial Studies, 22, 3779-3837.
- BRÄUNING, F., F. BLASQUES, AND I. VAN LELYVELD (2014): "A Dynamic Stochastic Network Model of the Unsecured Interbank Lending Market," DNB Working Paper.
- CRAIG, B. AND G. VON PETER (2014): "Interbank Tiering and Money Center Banks," Journal of Financial Intermediation.
- DREHMANN, M. AND N. TARASHEV (2013): "Measuring the Systemic Importance of Interconnected Banks," Journal of Financial Intermediation, 22, 586–607.
- FRICKE, D. AND T. LUX (2012): "Core-Periphery Structure in the Overnight Money Market : Evidence from the e-MID Trading Platform," Kiel Working Paper, 1759.
- HALAJ, G. AND C. KOK (2014): "Modeling Emergence of the Interbank Networks," Quantitative Finance, 00,

References II

- IN 'T VELD, D. AND I. VAN LELYVELD (2014): "Finding the Core: Network Structure in Interbank Markets," Journal of Banking and Finance.
- LANGFIELD, S., Z. LIU, AND T. OTA (2012): "Mapping the UK interbank system," Mimeo.
- MASTRANDREA, R., T. SQUARTINI, G. FAGIOLO, AND D. GARLASCHELLI (2014): "Enhanced Reconstruction of Weighted Networks from Strengths and Degrees," New Journal of Physics, 16, 043022.
- SQUARTINI, T., I. VAN LELYVELD, AND D. GARLASCHELLI (2013): "Early-Warning Signals of Topological Collapse in Interbank Networks," *Scientific Reports*, 3, 3357.
- UPPER, C. (2011): "Simulation methods to assess the danger of contagion in interbank markets," Journal of Financial Stability, 7, 111–125.
- UPPER, C. AND A. WORMS (2004): "Estimating Bilateral Exposures in the German Interbank Market: Is there a Danger of Contagion?" European Economic Review, 48, 827–849.
- VAN DEN END, J. W. (2008): "Liquidity Stress-Tester: A macro model for stress-testing banks liquidity risk," DNB Working Paper.
- VAN DER LEIJ, M., C. HOMMES, AND D. IN 'T VELD (2014): "The formation of a core-periphery structure in financial networks," *Working Paper*.
- VAN LELYVELD, I. AND F. LIEDORP (2006): "Interbank Contagion in the Dutch Banking Sector: A Sensitivity Analysis," International Journal of Central Banking, 31, 99–133.