

Forbearance and Broken Credit Cycles

Tomohiro Ota Bank of England

14th November 2013 European Banking Authority

* The views expressed in this presentation are mine and not necessarily those of the Bank of England.

Motivations: from crisis to post-crisis

- •Low Productivity (Hughes and Saleheen, 2012)
 - •Unusual fall in the level of productivity after the crisis (except for US)

Motivations: from crisis to post-crisis

Property Price Puzzle

•Residential property price experienced 250% increase from 2000 till 2007, the price dropped by only 20% after the crisis

Motivations: from crisis to post-crisis

Slow develerage (especially in less performing sectors)

Motivations: from crisis to post-crisis

Slow develerage (especially in less performing sectors)

Motivations: from crisis to post-crisis

Broken credit cycle in Japan

- •Correlation of land price and GDP (1st order difference) was 0.49 from 1956 till 1991, but -0.15 from 1991 till 2005.
- •Looks like the correlation recovers after 2005

Motivations: Can forbearance be an answer?

•Forbearance:

- •Banks do not liquidate less-performing borrowers by revising terms of the contracts
- Also called: Zombie lending, evergreening loans

Why banks forbear

- Liquidating bad borrowers need capital (or bankrupt)
- •Liquidation value could be higher in the future (gamble for resurrection)

•Is it good or bad?

- Rational for stricken banks
- comes at a macroeconomic cost in the long run
 - Resources are wasted
 - •Less new investment, especially to new entrants
- Could boost outputs in high-leverage sectors

Literature

- Forbearance (theory)
 - Kocherlakota and Shim (2007)
 - Caballero Hoshi and Kashyap (2008)
 - Philippon and Schnabl (2013)
- Forbearance (empirical)
 - Peek and Rosengren (2005)
 - Saita et. al. (2003)
 - Kwon, Narita and Narita (2009)

Relevant theories

- Kiyotaki and Moore (1997)
- Krishnamurthy (2003)
- Lorenzoni (2008)
- Korineck and Jeanne (2011)

Overview

1. Introduction

2. Defining baseline model

- 1. Mechanism of leverage and de-leverage
- Financial accelerator and "crisis"

3. Modelling forbearance

- 1. Impacts of forbearance
- 2. Banks' incentive and coalition

4. Policy discussions

- 1. Welfare analysis (simplistic)
- 2. Implementing efficient outcome

Assumptions

- 3 sets of players:
 - Firms (atomless): better stochastic production technology $a_t = \{a_{H}, a_L\}$
 - Banks (many, but finite): collect deposit to lend or invest directly
 - Dealers (atomless): with less profitable non-stochastic technology

Firm's problem

Budget constraint

$$q_t k_t^f \leq D_t + \omega_t$$

Collateral constraint

$$D_t \le (1-h)E\left[q_{t+1}\right]k_t^f$$

Demand function (constrained)

$$k_t^f = \frac{\omega_t}{q_t - (1 - h)E_t[q_{t+1}]}$$

Harvest (at t+1):

firms obtain $a_{t+1} k_t^f$ $a_{t+1} = \{a_{H}, a_t\}$ with $prob \pi$ and $1-\pi$

Bankruptcy:

Firms cannot harvest any with Prob γ

• Updating wealth ω_{t+1} :

$$E_{t}[\omega_{t+1}] = \pi (1 - \gamma) \left(a_{t+1}^{H} k_{t}^{f} + q_{t+1}^{H} k_{t}^{f} - R_{t} \right) + (1 - \pi) (1 - \gamma) \left(a_{t+1}^{L} k_{t}^{f} + q_{t+1}^{L} k_{t}^{f} - R_{t} \right)$$

Firms' problem: one more assumption

Do firms realise all capital gains from their asset holding?

$$E_{t}[\omega_{t+1}] = \pi (1 - \gamma) \left(a_{t+1}^{H} k_{t}^{f} + q_{t+1}^{H} k_{t}^{f} - R_{t} \right) + (1 - \pi) (1 - \gamma) \left(a_{t+1}^{L} k_{t}^{f} + q_{t+1}^{L} k_{t}^{f} - R_{t} \right)$$

• Firms realise a fraction η of the capital gain

$$E_{t}[\omega_{t+1}] = (1 - \gamma) \left(E_{t} [a_{t+1}] k_{t}^{f} + E_{t} [q_{t+1}] k_{t}^{f} - R_{t} \right) + (1 - \gamma) \left(E_{t} [\Delta a_{t+1}] k_{t}^{f} + \underline{\eta} E_{t} [\Delta q_{t+1}] k_{t}^{f} \right)$$

Firms' demand function and financial accelerator

$$k_t^f = \frac{\omega_t \left(\eta q_t k_{t-1}^f \right)}{q_t - (1-h)E_t \left[q_{t+1} \right]}$$

Dealers' problem

Dealers' payoff function

$$\Pi_t = f\left(A, k_t^b\right) - rq_t k_t^b$$

Dealers' demand function (downward sloping)

$$k_t^b = \frac{A}{2} - \frac{1}{2}rq_t$$

Market Clearing condition

$$k_t^f + k_t^b = K$$

Banks' problem

• Banks determine loan size D_t and repayment R_t to maximise their next period payoff

$$E_t [W_{t+1}] = W_t + E_t \left[(1 - \gamma) R_t + \gamma q_{t+1} k_t^f - (1 + r_t) D_t \right]$$

- Each bank lends to many firms
- Banks make a take-it-or-leave-it offer to firms and take all excess profits

$$E_t \left[\omega_{t+1} \right] = \omega_t$$

$$E_t \left[W_{t+1} \right] \ge W_t$$

- Borrowing firms' default risks are perfectly correlated:
 - i.e. with probability γ , a bank receives no repayment

Equilibrium (when η is low)

Firms' unconstrained demand fn

Equilibrium with negative macro shock $(a_{t+1} = a^L)$

• When η is small: Unique equilibrium

Equilibrium Price (output) Dynamism

Proposition: In the baseline model, the asset price q_t follows a process with (nearly) zero drift.

Equilibrium Price (output) Dynamism

- 'Outsider' sells land
- Firms $(\boldsymbol{\omega}_{o})$ and banks (\boldsymbol{W}_{o}) are endowed

- 'Outsider' buys land at q₂
- Firms, bank and dealers consume everything and die

3. Forbearance model

What happens to the 'stricken' banks under neg. shock

Asset price plunge creates loan loss of the banks

$$q_{t}k_{t-1}^{f} - (1+r) D_{t-1}$$

$$= q_{t}k_{t-1}^{f} - (1+r) (1-h) E_{t-1} [q_{t}] k_{t-1}^{f}$$

$$< 0 ?$$

Banks with capital W_t below a regulatory threshold are penalised

$$W_{t+1}|_{a_{t+1}=a^L} = W_t + q_{t+1}k_t^f - (1+r_t)D_t$$

 $< \bar{W}$

- Banks can 'make up' their capitals if they can contain the plunge
- · ... but how?

Forbearance: a basic structure

3. Forbearance model

Forbearance: definitions

- Renegotiation of terms and conditions of loan contracts
 - LTV covenant breach
 - Interest / debt service breach
 - Maturity extension
 - Payment holiday
- Creating new loans to help borrowers service their debts
 - "snowballing loans" (Japan)
- Foreclosing borrowers, but not liquidating collateral assets
 - Spanish banks till 2011

3. Forbearance

Forbearance: assumptions

- Bad borrowers (fraction γ)' productivity is fixed at zero throughout the periods
 - le they do not recover, nor deteriorate further
- The value of bad borrowers is measured by the value of their collateral (ie banks have to write off all negative equities)
- Banks can forbear only at t=1, and have to unwind at t=2
- Banks can choose the fraction $\theta \leq 1$ of "zombie borrowers" out of their bad borrowers
- Banks have a chance to collude (not to liquidate bad borrowers)

Forbearance: impact on price

- bad borrowers stay at their land without producing any
 - ... and squeeze total available production capital
 - Asset price should be pushed up in any equilibrium

Equilibrium Price Dynamism

3. Forbearance model

Equilibrium Investment Dynamism (when η is low)

Forbearance: impact on k_I^f

Firms' demand function:

$$k_t^f = \frac{\omega_t \left(\eta q_t(\theta) k_{t-1}^f \right)}{q_t(\theta) - (1 - h) E_t \left[q_{t+1}(\theta) \right]}$$

- Higher land price lowers firms' purchasing power directly
- But the collateral value of land does not increase as the unwinding of forbearance is expected
- i.e. the 'haircut' of collateral land increases by forbearance
- Higher land price increases firms' wealth
- Total supply of land decreases to $K \theta \gamma k^f_0$.
 - $\theta \gamma k^f_0$ is left unused

Forbearance: impact on k_I^f (new entrants)

Firms' demand function:

$$k_t^f = \frac{\bar{\omega}_t}{q_t(\theta) - (1 - h)E_t\left[q_{t+1}(\theta)\right]}$$

- Survived (incumbent) firms' purchasing power is supported by the wealth effect to some extent
 - If we introduce new entrants with higher productivity possessing ω_o at t=1, their land holding decreases further than the incumbents

Static Equilibrium (when η is high)

- When η is larger: Multiple equilibria
 - Demand curve becomes Z-shape
 - Focus only on the stable equilibrium

Forbearance (when η is high)

- Forbearance could increase or decrease firms' land holding $oldsymbol{k_1}^f$
 - Depend on parameters, particularly higher η
 - Difficult to solve analytically numerical exercise needed
- Increase of k_1^f is not the sufficient condition of higher output

Incentive of Forbearance

- Authorities monitor banks' W_1 and force banks to close if $W_1 < 0$
- Banks choose the fraction of zombie borrowers θ
 - By tomorrow (t=2) when they are forced to liquidate everything, the banks can earn profit by new lending and can expect higher land price q_2 with prob. π

Is forbearance good or bad?

- Forbearance is rational for 'stricken' banks
- Forbearance <u>lowers</u> investment (and output)
 - Some production capital is wasted
 - Productive firms reduce investment
 - Healthy banks (and the stricken banks) reduce profit
- Forbearance <u>increases</u> investment (and output)
 - If the economy is highly leveraged, the positive 'wealth effect' outweighs everything else

Discouraging forbearance

- If W_1 is increased by the government (capital injection), or the threshold W^{bar} is lowered, banks do not have to forbear
- But if the injection is insufficient it could rather incentivise forbearance

Provisioning and capitalisation: Japan and Spain

Policy implications

- Difficulty in monitoring forbearance
 - Forbearance could 'hide' non-performing loans
 - Stress test need to be conservative in asset valuation (asset price would plunge when banks unwind forbearance)
 - Healthy banks' valuation should be tightened
- Explains the international productivity gap
 - The US: de-leveraging till 2010
 - The UK: less de-leveraging in CRE sectors etc

Directions for further works

- Social planner's optimal θ (regulatory forbearance)
 - Bank failure is currently costless in this model
 - Surviving banks replace loans without friction
 - Stricken banks do not internalise all negative effect on output
- Another incentive of forbearance
 - Expected price recovery in the future can lead to forbearance
 - Externality creates a dynamic inconsistency
- Endogenous interest rate
- DATA!

Summary

- Banks do forbearance to avoid liquidating collateral assets in the middle of the plunge of asset price (= realising a larger loan losses).
- Higher asset price (than it should be) and expected price decline raise haircut of collateral assets and tightens healthy firms' credit constraint (negative externality)
- Forbearance lowers productivity by wasting production capital and by tightening credit constraint of productive firms (esp. new entrants)
 - But if financial accelerator effect is strong, higher price could boost firms' investment
- Healthy banks' profit would be reduced (negative externality)
- Policy responses would be non-monotonic

Appendix: revival of zombies?

- During the "resolving NPL" stage from 2002 to 06, 10 tn Yen loans were downgraded and 10tn Yen were upgraded
- Banks choose the fraction of zombie borrowers heta (collectively)

			cumulative chg
			FY2002 - FY06
			JPY TLN
NPL	Ls based on the FRL (Financial Reconstruction Law)		-31.3
	(of which) Specia	al attention Loans (3m arrears or renegotiated loans)	-12.6
	Increase fact	ors Newly generated loans due to weakened business activities	12.3
		Upgrade from riskier categories	2.6
		Improvement of business condition of borrowers	1.4
		Establishment of restructuring plans	1.2
	Decrease fac	tors Return to normal claims	-12.1
		Improvement of business condition of borrowers	-9.7
		Establishment of restructuring plans	-2.7
		Downgrade to riskier categories	-10.3
		repayments etc	-5.2
	(of which) Doubtful and bankrupt/de facto bankrupt		-18.7
	Increase fact	ors Newly generated loans due to weakened business activities	15.0
		Downgrade from safer categories	10.3
	Decrease fac	tor Removal from B/S	-44.1

Competitive equilibrium (at t > 0)

• When η is larger: No equilibrium (crisis)

