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BACKGROUND FACTS

• The financial crisis heavily affected the euro area interbank money 
market, by increasing liquidity risk and counterparty credit risk: 
according to the ECB's Euro Money Market Survey (2010), euro 
money market aggregate turnover decreased, as a consequence of 
interbank trades contraction

• The ECB introduced extraordinary measures: fixed-rate tender 
procedure with full allotment in ordinary three-month LTROs; two 
3-year, 12-, 13- and 6-month full-allotment LTROs; full-allotment 
fixed-rate MROs; reduced the reserve ratio from 2 to 1 percent; 
broadened the set of collateral eligible for refinancing operations

• ECB's Financial Stability Review (2015, 2017) argues that banks 
may have replaced more expensive debt funding with Eurosystem's
financial support

• Banks’ price-to-book ratios have decreased to low levels, reflecting 
market doubts about banks' asset profitability, mostly stemming 
from long-standing non-performing loans
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OVERVIEW: OBJECTIVE

The study suggests a methodology, using data from the financial 
crisis, to curb banks' daily liquidity risks:

• Liquidity risks are modelled as euro area banks and ECB's 
reactions to innovations, in the form of unexpected changes of 
traded liquidity amounts

• The equilibrium condition between liquidity demand and 
supply dynamics is empirically tested, to estimate euro area 
bank risks' evolution and persistence

• Modelling reactions to innovations and estimating liquidity 
shocks' size help understand how big liquidity buffers should 
be in a real-like stress scenario

• Estimated liquidity shocks and sensitivities can be used for 
stress-testing purposes in order to assess liquidity buffers' 
adequacy
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OVERVIEW: MAIN FINDINGS

• Euro area banks' liquidity dynamics, sustained by ECB's 
accommodative supply, has been particularly sensitive to 
stress-induced shocks, exhibiting very long memory of 
lagged conditional variances and disturbances

• Expectations of risk-related variables appear to explain a 
large fraction of banks’ liquidity dynamics

• Estimation results show that banks' precautionary liquidity 
buffers, at the 0.95 confidence level, should be added 11.3 
percent to the daily expected liquidity change; they should 
be increased by 21.9 and 44 percent for reaching 0.975 and 
0.99 confidence level 



BANK’S PROBLEM:
INTRO

Under uncertainty, the bank retains cash to settle 
daily payment obligations as long as excess 
liquidity does not harm the bank’s own profitability, 
for missing yielding investments

Specifically, the bank’s problem is to select the 
amount of liquidity over time so as to minimise the 
cost of payment failures, i.e. the liquidity risk, 
against the opportunity cost of holding cash 
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The bank chooses cash �� ≥ 0 to minimise �(��) over 
discrete time �, i.e.

	 � = min
��,����|�∈� ℐ� �

� � �� + ������	 ���� 																																		 1

s. t. 		���� = ����|� +#$���, # > 0, $��� ∼ (0, '���)

where �(��) = ((�)� − +���),, (� is the amount of assets 
bearing financial risks )�, +� is the foregone yield for holding 
cash ��, 0 < � < 1 is the discount factor and �� the 
expectation  operator, given information available at time �

G. Maddaloni, ‘Bank risks and liquidity dynamics'

BANK’S PROBLEM:
DEFINITION
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BANK’S PROBLEM:
RATIONALE
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The bank holds cash just enough to offset 
the cost associated with the liquidity risk and 
prevent profitability from suffering excess 
liquidity 

Hence, the bank wants the illiquidity cost 

and the opportunity cost to be as close as 

possible, i.e. the bank minimises the 

distance (�)� − +��� over time 



Although the bank chooses ���� at time � + 1, the decision 

is partly built on the information the bank has collected in 
the past. So, we can imagine that, at time �, the bank 
chooses �� and ����|� as well, conditional on the 

information set ℐ�, i.e. ��, ����|� ∈ . ℐ� , .: ℐ → �,

� ∈ 0,1,2,… ,∞
Obviously, the choice of ����|� is not conclusive since the 

bank may still adjust ����, if an innovation occurs: the 
difference between ���� and ����|� measures the bank’s 

reaction to shocks at � + 1, i.e. ���� −	����|� = #$���,
where # is the bank’s sensitivity to innovation $���
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BANK’S PROBLEM:
RATIONALE – CONTINUED
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From the first-order condition of 1 	over �� and ����|�, assuming ��+��� ≠ 0
and dropping �56 +���, (���)��� − +������� , we obtain

��∆����
��

= ��∆(���
(�

+ ��∆)���
)�

+ ��(∆(���∆)���)
(�)�

− ��∆+���
+� − ��(∆+���∆����)

+���
							(2)

where ∆���((�)�) = (���)��� − (�)�, ∆(���= (��� − (�, the same holding for 
∆���(+���), ∆)���, ∆+���and ∆����

Subtracting and dividing both sides of the transition equation in 1 by ��, we 

obtain

∆����
��

= ��∆����
��

+ 8���																																																																																																											 3

with 8��� ∼ (0, :���)
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BANK’S PROBLEM:
SOLUTION
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Finally, from (2), (3) and lowercase letters 
representing log first-differences over �, we obtain

;��� = ��<��� + ��=��� + :���>? − ��@��� − :���
AB + 8���										(4)

where :���>? = D�(∆E���∆F���)
E�F�

and :���
AB = D�(∆G���∆����)

G���
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BANK’S PROBLEM:
SOLUTION – CONTINUED
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As the pair ��, ����|� is the bank’s optimal 

choice, which solves problem (1) given the 
information at time � and innovation at 
� + 1, so must be the liquidity dynamics 
established by equation (4)
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BANK’S PROBLEM:
INTERPRETATION
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CENTRAL BANK’S PROBLEM:
INTRO
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The central bank's loss function 

H� , I� , convex and differentiable,

grows with the banking system's financial 
risks I�, which are not under the central 

bank's control
However, as innovations are known, the 
central bank provides cash H� in order to 

mitigate banks' financial risks
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The central bank’s problem is

J H = minK�∈� ℐ� ��
L H�, I� + �M �����J H��� 																												 5

s. t. 		H��� = H� +OH���, 
I��� = I� +OI��� ,	OI��� ∼ (0, P���)

with partial derivatives LK ≤ 0, LR ≥ 0, 0 < �M < 1 the time 

discount factor and �� the expectation operator, given 

information available at time �

CENTRAL BANK’S PROBLEM:
DEFINITION
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If shock 	OI���	occurs, the central bank supplies 
OH��� additional cash to offset the effect. In other 
words, differentiating 5 over		OI��� and OH���
and for a given value of L, say L̅

LROI���= −LKOH��� 6

CENTRAL BANK’S PROBLEM: 
SOLUTION
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From the equilibrium condition of liquidity demand 

and supply dynamics over �, i.e. equating 4 and 

6 , we get

;��� = U��� + ��<��� + ��=��� + :���>? − ��@��� − :���
AB + V��� 7

where U��� is the central bank’s money supply log 

first-difference and V��� = 8��� + XYZR���
K�X[

LIQUIDITY DYNAMIC EQUILIBRIUM: 
DEFINITION



LIQUIDITY DYNAMIC EQUILIBRIUM: 
MODEL’S TESTING

Since they are unobservable, liquidity shocks can be 
modelled from residuals V���	in 7 , i.e.

V��� = ;��� − U��� − ��<��� − :���>? − ��=��� + ��@��� + :���
AB 		

as, for example, a GARCH (1,1) process. Precisely, 

we can regress liquidity log-variations on U���	and 
conditional expectations <���|�, =���|�, 	:���|�>? , 	@���|�, 
:���|�

AB
and finally estimate parameters in 7
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LIQUIDITY DYNAMIC EQUILIBRIUM: 
MODEL’S TESTING

Compactly, let \��� be the vector of ] explanatory variables, 

i.e.

\��� = ^��� + _��� (8)

where ^��� and _���~(b, c���) are the drift and the noise 
vectors and c��� is the ]-dimensional covariance matrix. 
From (7) and (8) and conditional expectations \���|�, we write

;��� = δe + δ�U��� + \′���|� g + V��� (9)

where δ’s are elasticities to be estimated, V��� = i���j��� is 

the liquidity risk process, i���, = ke + k�V�, + k,i�, and j��� are
i.i.d.~(0,1) noises
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MODEL’S TESTING: CONDITIONAL EXPECTATIONS
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In continuous time, the percentage change of l(�) can be represented 

as a stochastic differential equation

ml(�)
l(�) = n � m� + o(�)mp																																																																																(10)

where n � is the drift, o � < ∞ the volatility and mp∼(0, m�) the noise.
Then, Taylor-expand log(l) around le

log l = log(le) +
1
le

l − le − 1
2le,

l − le , + =tU<u]mt=

Letting l → le, taking expectations and dropping terms of order higher
than m�, from (10) we obtain

� mlog l = n − o
2 m�																																																																																						(11)



MODEL’S TESTING: CONDITIONAL EXPECTATIONS

CONTINUED
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Discretise (10) over � as

∆v���
v�

= n��� + o��� ∆p���

where n���is the drift, o��� the volatility and	∆p���∼(0,1) the 
noise, as before. Then, like in (11), get the log first-difference 
conditional expectation w���|�

w���|� = n���|� − o���|�
2

Assume w���	behaves as a random walk, i.e. n��� = w�, and 
estimate o���|� as the latest 20-period moving variance. Then use 

those explanatory variables’ expectations, i.e. \���|�	, to estimate 

(9)
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MODEL’S TESTING: DATA

The analysis has been conducted on business daily time series over a ten-year 
period, from January 2007 to December 2016

Raw time series have been transformed into daily log first-differences and 
expectations have been computed under the random-walk hypothesis

All data are drawn from financial time series publicly available in the internet 
Specifically: 
• Unsecured interbank money markets' interest rates have been taken from the 

European Money Market Institute's (EMMI) web site
• Daily series on euro area repo contracts' rates and volumes have been drawn

from the RepoFunds Rate's (RFR) web site, which collects aggregate 
information from BrokerTec and Mercato telematico dei Titoli di Stato (MTS) 
platforms accounting for most euro area repo contracts

• Statistics on euro area banks' liquidity reserves, central bank's open market 
operations (i.e. MROs, LTROs, FTOs and structural operations), marginal
lending facility and others (i.e. domestic credit, triple-A-rated euro area 
sovereign one-year yield, bond-market stress index, two-or-more EU sovereigns' 
default joint probability) have been taken from ECB web pages and from the 
disclosed part of ECB Statistical Data Warehouse (SDW)
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MODEL’S TESTING: GARCH (1,1) FINDINGS
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Euro area banks' liquidity dynamics, sustained by ECB's accommodative 
supply, has been particularly sensitive to stress-induced shocks

Expectations of risk-related variables appear to explain a large fraction of 
the remaining liquidity share

Expected log-variations of observed variables, under the random-walk 
process hypothesis, and the liquidity demand and supply's dynamic 
equilibrium explain nearly 59 percent of banks' aggregate reserves 
changes. The remaining 41 percent is represented by the GARCH (1,1)
process, exhibiting very long memory of lagged conditional variances and 
disturbances, whose parameters' values sum over 0.99

The normal distribution hypothesis is rejected and the GARCH estimation 
is carried out under Generalised Error Distribution (GED) assumption: the 
GED parameter's estimate is 0.71, which points to a leptokurtic 
distribution, as commonly occurs with financial times series
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Dependent Variable: RESERVES   
Method: ML - ARCH (Marquardt) - Generalized error distribution (GED) 
Date: 04/01/18   Time: 11:03   
Sample (adjusted): 1/30/2007 12/30/2016  
Included observations: 2543 after adjustments  
Convergence achieved after 29 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(11) + C(12)*RESID(-1)^2 + C(13)*GARCH(-1) 

     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     REFI_OPS 2.116518 0.013583 155.8227 0.0000 

E_DOM_CRED 9.656572 1.823163 5.296603 0.0000 
E_REPO_RATE 5.986673 1.135691 5.271392 0.0000 
E_REPO_VOL 0.015368 0.006929 2.217856 0.0266 

E_12MGOV_SPREAD -2.655820 0.339878 -7.814032 0.0000 
E_EONIA 3.160027 0.601865 5.250390 0.0000 
E_OVERN -0.007655 0.001004 -7.623011 0.0000 

E_SOVR_DEFAULT_P 0.021641 0.005853 3.697219 0.0002 
E_BOND_STRESS 0.012762 0.004011 3.181361 0.0015 

C 0.005720 0.000946 6.045078 0.0000 
     
      Variance Equation   
     
     C 3.65E-05 9.37E-06 3.890394 0.0001 

RESID(-1)^2 0.053890 0.008991 5.993629 0.0000 
GARCH(-1) 0.936990 0.007902 118.5779 0.0000 

     
     GED PARAMETER 0.709583 0.021914 32.38060 0.0000 
     
     R-squared 0.589568     Mean dependent var 0.000629 

Adjusted R-squared 0.588109     S.D. dependent var 0.170487 
S.E. of regression 0.109416     Akaike info criterion -3.038813 
Sum squared resid 30.32496     Schwarz criterion -3.006656 
Log likelihood 3877.850     Hannan-Quinn criter. -3.027148 
Durbin-Watson stat 2.254802    

     
     

 

MODEL’S TESTING – GARCH ESTIMATION (EVIEWS 7)
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LIQUIDITY RISK MANAGEMENT: DEFINITIONS

Given the expected daily liquidity percent change ;���|�, we can set 

some confidence level x ∈ (0,1) such that �y(x) is the smallest liquidity 
shortfall, also expressed as a daily percentage, occurring with probability 
at most as big as 1 − x, that is

�y x = u]z ; ∈ ℝ: Pr �y ≥ ; ≤ 1 − x

Probabilistically, �y is a quantile of the liquidity shortfall distribution and 
confidence values for x may be, say, 0.95, 0.975 or 0.99. For those 

confidence levels we define, given the liquidity shortfall's occurrence, 
the expected liquidity shortfall ��y, as

��y x = 1
1 − x~ ; ∙ Pr(;)

B��� �

where Pr(;) is the probability assigned, on the grounds of the estimated 
GARCH distribution, to the liquidity shortfalls at least as big as �y x



LIQUIDITY RISK MANAGEMENT: INTUITION
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Expected liquidity change ls+1|s, liquidity shortfall LS and expected liquidity shortfall ELS at α-confidence level
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LIQUIDITY RISK MANAGEMENT: EMPIRICAL RESULTS

According to the GARCH (1,1) results, the liquidity shortfalls of 
the estimated shocks' distribution at 0.95, 0.975 and 0.99 
confidence levels are �y 0.95 = 0.107, �y 0.975 	= 0.198 and 
�y 0.99 = 0.365

This means that banks' precautionary liquidity buffers, at the 
0.95 confidence level, should be added 11.3 percent to the 
daily expected change. Liquidity positions should be increased 
by 21.9 and 44 percent for reaching 0.975 and 0.99 confidence 
level 

On the other hand, the daily expected liquidity shortfalls, 
estimated at the corresponding confidence levels, are 
��y 0.95 = 0.298, ��y 0.975 = 0.456 and ��y 0.99 = 0.727
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RISKS AND LIQUIDITY DYNAMICS: POLICY IMPLICATIONS (1)

Precautionary buffers may complement the liquidity requirement set under 
business-as-usual conditions, see Maddaloni (2015)

If large changes are expected, from the ), statistics of the GARCH 
estimation, we establish �y(x) to be at least as big as 0.695 (which is 
obtained as 0.41/0.59) times the daily expected liquidity change ;���|� and, 

given the expected outgoing payments percent change ����|�, we find

����|�∗  − ��∗ 
��∗

= ;���|� + max 0.695 ∙ ;���|�, �y(x) − ����|�

where ����|�∗ is the optimal liquidity ratio (as a share of daily outgoing 

payments) at � + 1 given information available at time �, which is found to 

be the optimal liquidity turnover ratio's inverse by Maddaloni (2015), i.e.

Liquidity	turnover	ratio = Daily	outgoing	payments 
Daily	average	liquidity	balance
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RISKS AND LIQUIDITY DYNAMICS: POLICY IMPLICATIONS (2)

Estimated liquidity shocks and sensitivities can also be used 
for stress testing purposes 

For instance, stress-induced shocks, derived from the 
GARCH-estimated distribution at different x-probability levels, 

can be applied to banks‘ current and prospective cash 
outflows against their liquidity positions, which would be 
assessed as satisfactory if they meet outstanding stressed 
payment obligations in full 

A similar argument goes for risk-related variables, whose 
effects on banks' liquidity positions may be evaluated over a 
consistent time horizon by stressing sensitivities with a 
multiple of their GARCH-estimated standard deviation
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