

Macro stress testing at the Bank of Japan

Tomiyuki Kitamura Bank of Japan

March 2017

Disclaimer: The views expressed here are those of the presenter and do not necessarily reflect those of the Bank.

Objectives

- The Bank of Japan (BoJ) aims to achieve two primary objectives by conducting the macro stress test:
 - Identifying potential risks Japan's financial institutions face and evaluating the resilience of the Japan's financial system against those risk factors.
 - 2. Facilitating communication with relevant domestic and foreign parties in order to secure the stability of the financial system.

Scope and publication

- The framework incorporates activities of 371 banks.
 - 10 major banks (including G-SIBs), 105 regional banks, and 256 shinkin banks (regional cooperative financial institutions).
- The aggregate-level results of the macro stress test are reported in Financial System Report (FSR) semiannually.
- The scenario design and changes made to our model, *etc.* are reported in FSR annex series.
- Paths of main variables in the scenarios are published on the BOJ website
 - Relevant macroeconomic series such as domestic GDP, international GDP, stock prices, nominal interest rates, and exchange rates
 ³

Main features of our models

- Our stress testing is of top-down type.
- Two models for stress testing: FMM and interest rate model
- Financial Macro Econometric model (FMM): the main model
 - Incorporates feedback loops between macroeconomy and financial sector
- Interest rate model: the satellite model
 - Calculate the effects of changes in market interest rates:
 - effects on lending and funding rate
 - effects on unrealized gain/loss of bonds
- The details of the models are published: See Kitamura *et al*, "Macro Stress Testing at the Bank of Japan", 2014 (<u>http://www.boj.or.jp/en/research/brp/ron_2014/ron141008a.htm/</u>)

Key FMM equations to capture the feedback loops

• Interest coverage ratio of business sector (ICR) $ICR = f_{ICR}(NGDP, other variables)$

- Credit costs of bank b (CC_b) $CC_b = f_{PD}(ICR, NGDP, other variables)$
- Capital adequacy ratio of bank b (CAR_b) $\Delta CAR_b = f_{CAR}(CC_b, other variables)$
- Loans outstanding of bank $b(L_b)$ $L_b = f_{CAR}(CAR_b, other variables)$
- Nominal GDP (*NGDP*) $\Delta NGDP = f_{NGDP}(\Delta \sum_{b} L_{b}, other variables)$

Illustration of the feedback effects

Nominal GDP **Capital Adequacy Ratio** Internationally active banks Domestic banks percentage deviations from the baseline, %pts percentage deviations from the baseline, %pts 0.0 0 -0.1 -1 -0.2 -0.3 -2 -0.4 without feedback effects with feedback effects -3 -0.5 3 years 2 0 1 3 0 3 years 0 2 1 2 1

Credit losses of loans

- Credit losses are calculated based on the transitions of loans between banks' internal rating categories.
 - Different categories have different loan-loss provisioning rates.
 - Worse categories have higher rates.
 - Moving from better to worse category entails credit losses.

• The transition probabilities are linked with <u>corporate financial</u> <u>strength (B/S, P/L)</u> and <u>macroeconomic conditions</u>.

Example of the estimation of transition probabilities

D.1-8. Transition probability from *m* to $n \ (m \neq n)$

$$\ln\left(\frac{PT_{i,t}^{mn}}{1 - PT_{i,t}^{mn}}\right) = \overline{\alpha^{mn}} + \alpha_i^{mn} + \beta^{mn} \cdot \text{nominal GDP growth rate}_t + \gamma^{mn} \cdot \text{ICR}_t + \delta^{mn} \cdot \text{quick ratio}_t + \eta^{mn} \cdot \text{DE ratio}_t$$

 $PT_{i,t}^{mn}$ is transition probability of bank *i* from category *m* to *n*.

 $\overline{\alpha^{mn}}$ is the mean value of bank *i*'s fixed effect ($\overline{\alpha^{mn}} + \alpha_i^{mn}$).

m	n	1	2	3	4	5
1	β	\backslash	—	—	-3.96*	-9.25****
	γ		-0.07 ^{***} L: -0.06 ^{***}	—	-0.14***	-0.16***
	δ		-2.68***	-8.06 ^{****} L: -9.05 ^{***}	-7.88***	-20.12***
	η		_	_	_	_
2	β	—		—	—	—
	γ	0.08***		—	-0.03***	-0.18***
	δ	_		-6.40 ^{***} L: -4.43 ^{**}	_	-10.27***
	η	—		—	_	_
3	β	—	—		—	_
	γ	MA2: 0.10**	—		O: -0.20**	O: -0.19 [*] R, MA2: -0.18 ^{***}
	δ	—	MA4: 2.28 [*]		—	—
	η	—	—		_	_
4	β		_	—		
	γ		_	MA2: 0.10**		-0.07***
	δ		3.27***	_		-9.19***
	η		—	—		—

- Notes: 1. Category 1: normal; category 2: need attention excluding special attention; category 3: special attention; category 4: in danger of bankruptcy; category 5: de facto of bankrupt or bankrupt.
 - 2. The sample period is from the first half of fiscal 2005 to the first half of fiscal 2013.
 - 3. L represents a one period lag and MAn is the moving average of n period lags. O is the parameter for major banks and R is the parameter for regional banks.
 - In the shaded area, no statistically significant parameter is estimated and the transition probability is treated as an exogenous variable.

Overview of the interest rate model

- The model analyzes the effects of changes in the market yield curve on
 - 1. net interest income (via loan interest rates, deposit rates, bond interest income), and
 - 2. market value of bonds.

Some details: Estimating loan interest rate pass-through (1)

$$\Delta i_{L,k,t} = \mu_k + \sum_{j=1}^{2} \kappa_j \Delta i_{L,k,t-j}$$

$$+ \sum_{j=0}^{\Lambda} \left(\beta_j + \sum_m \beta_{mj}^* X_{m,k,t-1} \right) \Delta i_{M,t-j}$$
short-run impact
$$+ \left(\alpha + \sum_m \alpha_m^* X_{m,k,t-1} \right) \left(i_{L,k,t-1} - i_{M,t-1} \right)$$
adjustment towards
long-run relationship
$$+ \sum_m \lambda_m X_{m,k,t-1} + \phi \bar{Z}_{k,t} + \varepsilon_{k,t}$$

where

 $i_{L,k,t}$: loan interest rate of bank k at period t $i_{M,t}$: market interest rate at period t $X_{m,k,t}$: (vector of) pass-through explanatory variables

Some details: Estimating loan interest rate pass-through (2)

Pass-through explanatory variables $(X_{m,k,t})$

Scenario design: two stress scenarios

- <u>Tail</u> event scenario
 - Characterized by severely adverse financial and economic conditions equivalent to the Lehman shock each time,
 - Used to assess the stability of the financial system through fixed-point observations.
- <u>Tailored</u> event scenario
 - Flexibly designed to:
 - investigate the vulnerability of the financial system under different circumstances for every test, and
 - > assess transmission mechanisms of salient risks from a new point of view by extending the model and source data as appropriate.

Cyclical nature of the Tail Event Scenario

Condition 1	The output gap troughs around minus 7 to minus 8 percent.
Condition 2	The output gap worsens at least by 3 to 4 percentage points (i.e., the average in past economic recessions).

Sources: BOJ, etc.