EBA REPORT
 RESULTS FROM THE 2020 MARKET RISK BENCHMARKING EXERCISE

EBA/REP/2021/05

Contents
List of figures and tables
Abbreviations

1. Executive summary 9
1.1 Main findings of the benchmarking analysis 10
1.2 CAs' assessments based on supervisory benchmarks 14
$1.3 \quad 2021$ exercise - expected changes 15
2. Introduction and legal background 16
3. Main features of the 2020 market risk benchmarking exercise 19
3.1 Definition of the market risk hypothetical portfolios 19
3.2 Data collection process 20
3.2.1 IMV 20
3.2.2 Risk measures 20
3.3 Participating banks 21
3.4 Data quality issues 21
4. Market risk benchmarking framework 24
4.1 Outlier analysis 25
4.2 Risk and stressed measures assessment 35
4.2.1 Limitations 37
5. Overview of the results obtained 39
5.1 Analysis of VaR and sVaR metrics 39
5.2 A closer look at the VaR and sVaR results 44
5.2.1 Comparison of sVaR-VaR ratios 46
5.2.2 Drivers of variation 48
5.2.3 Supervisory actions 51
5.2.4 Modelling differences 52
5.2.5 Other drivers of variation 53
a. Size of the bank 54
b. Business model 55
c. Level of approval 56
d. Common stress period considered 57
5.2.6 Portfolio comparison 59
5.3 Analysis of IRC 60
5.4 Analysis of APR 63
5.5 P\&L analysis 64
5.6 Diversification benefit 65
5.7 Dispersion in capital outcome 67
5.8 Present value 67
6. Competent authorities' assessment 69
7. Conclusion 72
8. Annex 74

List of figures and tables

Figures

Figure 1: IMV scatter plots - low-IQD instruments 33
Figure 2: IMV scatter plots - high-IQD instruments 34
Figure 3: Interquartile dispersion and coefficient of variation for IMV and risk metrics by portfolio 41
Figure 4: VaR submissions normalised by the median of each portfolio 45
Figure 5: sVaR submissions normalised by the median of each portfolio 46
Figure 6: sVaR-VaR ratio for the average VaR and sVaR by portfolio 47
Figure 7: Qualitative data: VaR methodological approaches 48
Figure 8: VaR submissions normalised by the median of each portfolio (by methodological approach) 49
Figure 9: Qualitative data: VaR time-scaling techniques 50
Figure 10: Qualitative data - length of VaR lookback period 50
Figure 11: Qualitative data - VaR weighting choices 51
Figure 12: Qualitative data: source of LGD for IRC modelling 61
Figure 13: Qualitative data - number of modelling factors for IRC 62
Figure 14: P\&L chart example of low IQD 65
Figure 15: P\&L chart example of high IQD 65
Figure 16: CAs' own assessments of the levels of MR own funds requirements 2019 70
Figure 17: IMV scatter plots (all) 86
Figure 18: VaR submissions normalised by the median of each portfolio (by asset class) 99
Figure 19: sVaR submissions normalised by the median of each portfolio (by asset class) 103
Figure 20: sVaR submissions normalised by the median of each portfolio (by methodological approach) 107
Figure 21: VaR ratio with median (focus on small banks) 108
Figure 22: VaR ratio with median (focus on medium-sized banks) 109
Figure 23: VaR ratio with median (focus on large banks) 110
Figure 24: Additional P\&L charts with examples of low IQD 126
Figure 25: Additional P\&L charts with examples of high IQD 127
Figure 26: Comparison between IMV and truncated STD deviation method to select outlier for risk measures 128
Tables
Table 1: IMV statistics and extreme values. 27
Table 2: Average IMVs' interquartile dispersion by asset class 28
Table 3: IMV cluster analysis - number of banks by range 30
Table 4: Interquartile dispersion for IMV and risk metrics by risk factor 42
Table 5: sVaR-VaR ratio by range (number of banks as a percentage of the total) 43
Table 6: Coefficient of variation for regulatory VaR (controlling for HS) by modelling choice (\%) 53
Table 7: Average regulatory VaR by modelling choice 53
Table 8: Asset class comparison for VaR in terms of banks' size 55
Table 9: Asset class comparison for VaR within the same business model (cross-border universal bank) 56
Table 10: Asset class comparison for VaR in terms of level of approval 57
Table 11: Asset class comparison for sVaR in terms of time window applied 58
Table 12: Portfolio comparison for VaR, sVaR and IRC 59
Table 13: IRC statistics and cluster analysis 62
Table 14: Coefficient of variation for regulatory IRC by modelling choice (\%) 63
Table 15: APR statistics and cluster analysis 64
Table 16: Diversification benefit statistics 66
Table 17: Interquartile dispersion for capital proxy 67
Table 18: Banks participating in the 2019 EBA MR benchmarking exercise 74
Table 19: Instruments/portfolios underlying the HPE 75
Table 20: VaR cluster analysis - number of banks by range 79
Table 21: VaR statistics 80
Table 22: sVaR statistics 81
Table 23: P\&L VaR statistics 82
Table 24: Empirical expected shortfall statistics 83
Table 25: sVaR/VaR statistics 84
Table 26: P\&L VaR/VaR statistics 85
Table 27: VaR statistics (small banks only) 108
Table 28: VaR statistics (medium-sized banks only) 109
Table 29: VaR statistics (large banks only) 110
Table 30: VaR statistics (small TB banks only) 111
Table 31: VaR statistics (medium TB banks only) 112
Table 32: VaR statistics (large TB banks only) 113
Table 33: VaR statistics (same business model - cross-border universal bank) 114
Table 34: VaR statistics (low L3 A\&L banks only) 115
Table 35: VaR statistics (medium L3 A\&L banks only) 116
Table 36: VaR statistics (high L3 A\&L banks only) 117
Table 37: VaR statistics (IR and CS asset classes - only banks with general and specific IR risk approval) 118
Table 38: VaR statistics (IR and CS asset classes - only banks with general IR risk approval) 118
Table 39: VaR statistics (EQ asset class - only banks with general and specific EQ risk approval) 119
Table 40: VaR statistics (EQ asset class - only banks with general EQ risk approval) 119
Table 41: Stress VaR statistics (2008-2009 stress period only) 120
Table 42: PV statistics 121
Table 43: IRC - modelling choice: source of LGD - market convention 122
Table 44: IRC - modelling choice: source of LGD - non-market convention 123

Table 45: IRC - modelling choice: source of LGD - 1-2 modelling factors..................................... 124
Table 46: IRC - modelling choice: source of LGD - >2 modelling factors 125

Abbreviations

APR	all price risk
CA	competent authority
CDS	credit default swap
CO	commodities
CRD	Capital Requirements Directive
CRR	Capital Requirements Regulation
CS	credit spread
CS01	credit spread value of 1 basis point changes
CTP	correlation trading portfolio
CV	coefficient of variation
EBA	European Banking Authority
EQ	equity
ES	expected shortfall
EU	European Union
FRTB	fundamental review of the trading book
FX	foreign exchange
HPE	hypothetical portfolio exercise
HS	historical simulation
IMV	initial market valuation
IQD	interquartile dispersion
IR	interest rates
IRC	incremental risk charge
IT	information technology
ITS	implementing technical standards
LGD	loss given default
MC	Monte Carlo
MR	market risk
MRWA	market-risk-weighted asset
P\&L	profit and loss
PD	probability of default
Q\&A	question and answer
RTS	regulatory technical standards
RWA	risk-weighted asset
sVaR	stressed value at risk
VaR	value at risk

1. Executive summary

1. This report presents the results of the 2020 supervisory benchmarking exercise pursuant to Article 78 of the Capital Requirements Directive (CRD) and the related regulatory and implementing technical standards (RTS and ITS) that define the scope, procedures and portfolios for benchmarking internal models for market risk (MR).
2. The report summarises the conclusions drawn from a hypothetical portfolio exercise (HPE) that was conducted by the EBA during 2019/20. The primary objective of the exercise is to assess the level of variability observed in risk-weighted assets (RWA) for market risk produced by banks' internal models.
3. The exercise was performed on a sample of 54 European banks from 14 jurisdictions. The relevant institutions submitted data for 73 instruments recombined in 59 market portfolios in all major asset classes, i.e. equity (EQ), interest rates (IR), foreign exchange (FX), commodities (CO) and credit spreads (CS), as well as two correlation trading instruments recombined in four portfolios (CTPs), for a total of 63 benchmark portfolios. Thus, the exercise covers the entire population of EU banks with internal models for MR at the highest level of consolidation.
4. The analytical part of the exercise delivered by the EBA as summarised in this report provided to the competent authorities (CAs) a list of outliers to be examined in detail. The banks with the most significant number of outliers were also considered for interviews to discuss the assumptions behind banks' models that produced the outliers. In the 2020 exercise, no interviews with banks were carried out. There were several reasons for this, including the following: problematic model in the process of decommissioning, inspection already ongoing, issues already clarified during preceding exercises, limited resources available to banks/CAs due to Covid-19 outbreaks. The issues detected in the benchmarking exercise were nonetheless considered and addressed, where possible, by banks and CAs. Moreover, CAs and the EBA still collected feedback on how to improve forthcoming benchmarking exercises.
5. Finally, taking into consideration the results of the benchmarking exercise, CAs were asked to provide the EBA with responses to a questionnaire on the actions they plan to take with regard to each participating bank's internal model.

1.1 Main findings of the benchmarking analysis

6. The report measures variability in terms of the interquartile dispersion (IQD) ${ }^{1}$ and the coefficient of variation (CV) ${ }^{2}$ observed within each benchmark portfolio. The IQD is more robust than the CV when the sample is drawn from an unknown, fat-tailed distribution. As far as the market-risk-weighted asset (MRWA) variability is concerned, the IQD metric suggests a level of dispersion for all the risk measures provided by banks that needs to be monitored.
7. The primary considerations are that the 2020 analysis shows a reduction in the dispersion in the initial market valuation (IMV) with respect to the 2019 exercises with regard to the equity, interest rate and credit spread asset classes; see, for instance, Table 1. This improvement was expected and reflects the instruments' simplification as applied in the 2019 exercise: the instruments in this exercise consist of more plain vanilla instruments than in the previous (20162018) exercises. Also, a natural improvement in the understanding of the instruments in the exercise is expected from the first to the second exercise. Nonetheless, some variability in the results - in the FX and commodity asset class - persists despite the simplification; this mainly stems from the fact that a few instruments appear to have been understood differently by a minority of banks, which pushed up the dispersion coefficients. Some of these issues were addressed, where possible, and the quality of the data has improved during the exercise thanks to subsequent resubmissions.
8. As in previous exercises, data quality is still an issue in this exercise. There are a wide variety of reasons for low data quality. Some types of errors are trivial, such as the wrong unit reported, especially in the case of equity instruments. In order to improve data quality, the EBA notes that several rounds of iteration with submitters will be required, which can be difficult within the short time frame of the exercise. Other errors were linked to the misunderstanding of some instruments, such as instruments 38,39 and 47. The redraft of the legal text of the exercise in time for the next exercise should further improve the data quality in these respects.
9. The majority of the significant dispersions have been examined and justified by the banks and CAs. A minority of the outlier observations remain unexplained and are expected to be part of the ongoing activities of supervisors, who are expected to monitor and investigate the situation (see Section 1.2 and Chapter 6 of this report).

[^0]10. From a risk factor perspective, equity, interest rate and FX portfolios exhibit a lower level of dispersion than the commodity and credit Spread asset classes. This lower level of variability is likely to be due to the use of more consistent practices and assumptions that are more homogeneous across the banks (see Table 4: Interquartile dispersion for IMV and risk metrics by risk factor).
11. Regarding the single risk measures, across all asset classes except for commodity the overall variability for value at risk (VaR) is lower than the observed variability for stressed VaR (sVaR) (18% and 29% respectively, compared with 21% and 30% in 2019). ${ }^{3}$ More complex measures such as incremental risk charge (IRC) and all price risk (APR) show a higher level of dispersion (49% and 45% respectively, compared with 54% and 37% in 2019). We would point out that a direct comparison between 2019 and 2020 IQDs is possible because the structures of the two exercises and the instruments of which they were composed are the same.
12. As for the past exercise, to deepen the analysis of VaR and further investigate the variability drivers, different VaR metrics were computed and compared with the banks' reported VaR, in particular:

- an alternative estimation of VaR, called profit and loss (P\&L) VaR, computed by the EBA using the 1-year daily P\&L series submitted by banks using a historical simulation (HS) approach; and
- a comparable VaR, called HS VaR, which corresponds to the regulatory VaR reported by those banks that use an HS approach (only).

13. When comparing the variability between the regulatory VaR and these 'alternative' risk measures, we find a slight decrease in the IQD when considering a more homogeneous sample (i.e. HS banks only). In fact, for all the risk types, the dispersion observed for the P\&L VaR tends to be lower. This finding suggests that the modelling approach is not the only driver of the observed VaR variability. Other drivers, such as risks not captured in the model or the choice of absolute versus relative returns, offer further explanations for the results' variability (see Table 4: Interquartile dispersion for IMV and risk metrics by risk factor).
14. Even so, within the subset of banks using an HS approach, modelling choices (see Table 6: Coefficient of variation for regulatory VaR (controlling for HS) by modelling choice) seem to make a noticeable difference. Scaled 10-day VaR and the use of a lookback period greater than one year tend to produce lower dispersion than other modelling configurations for EQ, FX and CS. In terms of conservativeness, the calibration of more than one year seems to produce even more conservative results, at least for EQ, FX and CS (see Table 7: Average regulatory VaR by modelling choice). This observation differs from the finding of the 2019 exercise, which was run

[^1]over different portfolios. Overall, it is clear that this analysis is extremely sensitive to the different portfolios used to produce the statistic and to the low number of subjects available, so it is difficult to generalise the results.
15. The dispersion in sVaR figures is generally higher than the dispersion observed for regulatory VaR (see Table 21 and Table 22). The stressed period used was the one applied by the bank for capital purposes, so it was not harmonised in the sample. Different choices for the stressed period are permitted by the Capital Requirements Regulation (CRR) and these choices are considered and challenged in the regulatory approval process. While allowing banks to use their own individual stress periods reduces the comparability of the sVaR results across the sample, doing so facilitates the estimation of implied capital needs from the HPE. Nonetheless, banks in the exercise are asked to report the stressed period applied. As a result, the EBA drew up a subset of homogeneous, in time windows applied, and ran the benchmark for this subsample. It appears clear that when a homogeneous stress window is applied the sVaR figures tend to be less dispersed (see Table 41: Stress VaR statistics (2008-2009 stress period only)).
16. In addition to carrying out these analyses, the EBA conducted a comparison across banks of the ratio between sVaR and VaR for each of the hypothetical portfolios included in the benchmarking exercise (see Table 5: sVaR-VaR ratio by range (number of banks as a percentage of the total)). The ratio generally varies significantly between the portfolios, especially for instruments subject to credit spread risk (from 0.75 to 8.15). However, on average, the ratio comes in at around 2.9 (see Table 25: sVaR/VaR statistics).
17. As expected, for the larger banks with significant trading activities the benchmarking portfolios are generally relevant to their actual trading book. For smaller banks, this is less the case, and this is why the EBA included simpler and more plain vanilla instruments in the 2019 exercise. The challenge remains to design a benchmarking exercise that can fit banks that have a specialised business model. Overall, the portfolios are, however, reflective of the risk factors experienced by most banks. In the 2020 exercise, EBA notices a reduction of the VaR dispersion, which is generally below 20\% IQD, except for the CS asset class (see Table 21: VaR statistics). Some single portfolios exhibit a significantly high dispersion, but in many cases this is driven by a substantially low value of the VaR in terms of absolute numbers, which tends to exacerbate the IQD figure. The aggregate portfolios also feature notably low levels of IQDs.
18. Regarding IRC, average variability (as measured by the average IQD for this category of portfolios) is higher than that observed for all other metrics considered in the report (49\%). This high variability is slightly lower than in the previous exercise - IQD was 54% on average in the 2019 exercise (see Table 13: IRC statistics and cluster analysis). The understanding of the IRC dispersion was further analysed by disaggregating various modelling choices (see Table 14, Table 43, Table 44, Table 45 and Table 46). While the number of risk factors applied does not seem to make a difference in terms of dispersions, applying non-market conventions to the source of LGD seems to reduce the dispersion of the IRC. In any case, these results need to be further tested in future exercises.
19. Regarding APR, average variability (as measured by the average IQD for this category of portfolios) is noticeably high in relation to the other metrics considered in the report (45\%). However, the APR assessment suffers from a chronic lack of contributions - only a few banks are authorised to model this asset class internally and most banks are currently in the process of reducing their exposure to correlation trading portfolios (CTPs), i.e. these portfolios are supposed to be in run-down mode (see Table 15: APR statistics and cluster analysis).
20. An additional metric considered as part of the analysis was the diversification benefits observed for VaR, sVaR and IRC in the aggregated portfolios (see Table 16: Diversification benefit statistics). As expected, there is evidence that larger aggregated portfolios exhibited greater diversification benefits than smaller ones. In general, the level of dispersion observed in diversification benefits tends to be lower than that in the corresponding metrics at the level of the individual portfolios.
21. As in the previous exercise, an assessment was also carried out of the variability of the empirical estimates of the expected shortfall (ES) at a 97.5% confidence level. The results indicate that the dispersion in this metric across risk factors is similar to that found for VaR and P\&L VaR (see Table 24).

Dispersion in the capital outcome

22. Alongside the variability analysis, the EBA also conducted an assessment regarding possible underestimations of capital requirements (see Table 17: Interquartile dispersion for capital proxy). As the analysis is based on hypothetical portfolios and the capital requirements were defined using a proxy, the results should be interpreted as approximations of potential capital underestimations. The proxy for the implied capital requirements was defined as the sum of VaR and sVaR across all portfolios. For purposes of comparison, the proxy was computed three times. In one case, the VaR and sVaR figures were multiplied by the banks' total multiplication factor and, in the other, by the regulatory minimum of three only, i.e. ignoring the banks' individual addend(s) set by the CAs. Finally, a subset of banks applying the same stress period was also considered for capital dispersion. This metric enables a comparison of banks and an assessment of their variability in this regard.
23. The average variability across the sample as measured by the IQD is significant (around 21%), especially for the most complex portfolios in the credit spread asset class. This dispersion slightly decreases when considering more a homogenous capital proxy (20% applying 3 as the multiplier, and 17% for banks with the same stress period). Moreover, an analysis of the capital proxy pattern across the HPE's trades suggests that the ranges of capital value dispersion are broadly consistent, irrespective of whether the banks' actual multiplication factors are used or not.

Additional analysis carried out in the 2020 exercise

24. As introduced in the previous exercises, the EBA extended the analysis to other drivers of variation (see Section 5.2.5), such as the size of the bank, the business model of the bank, the level of approval granted by the CAs and the already mentioned stressed period applied in the
sVaR calibration. The size and business model analyses were developed further in comparison with the 2019 report.
25. In a nutshell, based on this additional analysis we can conclude that the size (in terms of RWA for market risk) of the bank has an impact on the figures, since smaller banks tend to produce slightly more dispersed results (see Table 8: Asset class comparison for VaR in terms of size of the banks). On the other hand, when considering the size in terms of the trading book (as a ratio of total assets), the smaller the trading book, the (slightly) smaller the dispersion (on average).
26. The discrimination based upon the business model did not deliver strong conclusions. As in the last exercise, the EBA applied as a discriminant the internal classification of banks, under which many of them are classified as cross-border universal banks (see Table 9: Asset class comparison for VaR within the same business model (cross-border universal bank)). Applying this definition of the business model, a smaller decrease in the IQD was identified due to a more homogenous sample. The business model analysis was further developed by considering the 'Level 3' assets and liabilities in the bank's books as a proxy for a more sophisticated business model linked to more exotic products (see Table 34, Table 35 and Table 36). This further specification did not prove conclusive since it reveals first an increase and then a decrease of dispersion depending on the 'Level 3 ' asset and liabilities ratio in the bank's trading book.
27. The subsamples analysis based upon the level of approval delivered interesting results. A priori it was expected that having banks with different levels of approval would have increased the dispersion of the results of the risk measures. In line with this assumption, the IQD results seem to fluctuate among the subsamples of different approval levels. This is because more homogeneous subsamples tend to produce smaller dispersions, but this positive effect is counterbalanced by the smaller number of firms in the sample. Basically, the benchmark provided and the 25th and 75th quantiles of the distribution tend to be less dispersed with respect to the whole set of banks. This implies that the different level of approval does indeed have an impact on the dispersion of the benchmarking results (see Table 10: Asset class comparison for VaR in terms of the level of approval).
28. Finally, as already mentioned above and in line with what was expected and reported last year, sVaR figures are far less dispersed when the benchmark is computed for a homogeneous subsample of firms that applied a similar time period for the stress window used for calibrating the sVaR (see Table 11: Asset class comparison for sVaR in terms of time window applied).
29. The 2020 Report also features the introduction of PV statistics (see Table 42). The PVs reported have generally low IQDs, and they were useful in distinguishing true outliers and outliers due to mispricing of the portfolios. Further analysis and application of the PV are expected in the future.

1.2 CAs' assessments based on supervisory benchmarks

30. CAs shared the outcomes of their assessments at bank level with the EBA (see Figure 16: CAs' own assessments of the levels of MR own funds requirements). The CAs' assessments confirmed
the existence of some areas that require follow-up actions on the part of specific institutions whose internal models were flagged as outliers in this benchmarking exercise.
31. Overall, CAs' assessment of the over- and underestimation of RWA was encouraging in the sense that CAs were aware of and able to explain the causes of most deviations. Although the majority of the issues were identified and actions put in place in order to reduce the unwanted variability of the RWA, the effectiveness of these actions can be evaluated only by CAs via constant monitoring of the benchmarking results.
32. The CAs are expected to pay great attention to the minority of cases in which the over- and underestimations were unexplained, to closely monitor these institutions and to put in place additional efforts to reduce these cognitional gaps in the future exercises.

$1.3 \quad 2021$ exercise - expected changes

33. The 2019 exercise represented a significant change from the 2016-2018 exercises in terms of the simplification of the portfolios. This simplification had a positive effect in obtaining less dispersed results than with the previous portfolios. Furthermore, it improved the significant data quality issues relating to some portfolios, while focusing on the model risk elements.
34. In the 2020 exercise the data submitted have further improved in quality thanks to the clarification of the legal text description of some instruments, and also to the further practice that the banks have gained from the present exercise. This had a positive effect in terms of dispersion in the data provided. Improvements, in terms of less dispersed results, have also stemmed from the change in the methodology to detect the outliers for the risk measures.
35. For the 2021 exercise, the EBA expects a further improvement in terms of the data quality in the submissions because of the further clarification provided in the 2021 ITS compared to the 2020 ITS. Moreover, the banks participating in the 2021 exercise can benefit from the 2019 benchmarking report that was published at the start of 2020.
36. The analysis run by the EBA for the 2021 exercise is expected to be relatively stable, and the EBA will try to deepen the assessment of the new elements introduced this year, especially the Present Value submission.
37. On a medium-term horizon, the EBA will consider reshaping the instruments and the portfolios in the exercise in a way that still keeps the instruments simple to ensure clarity regarding the instruments. This is because the different interpretations of the instruments have been a significant source of variability. The aim would also be to recombine these instruments in such a way that the different portfolios have meaningful designs when compared with each other. In addition, very importantly, the fundamental review of the trading book (FRTB) is understood to be of particular significance for the market risk benchmarking exercise. In the future, the exercise will require a major redesign to take into consideration the specific features of the FRTB.

2. Introduction and legal background

38. European legislators have acknowledged the need to ensure consistency in the calculation of RWA for equivalent portfolios, and the CRR and CRD include a number of mandates for the EBA to deliver technical standards, guidelines and reports aimed at reducing uncertainty and differences in the calculation of capital requirements.
39. In this regard, Article 78 of the CRD requires the EBA to produce a benchmarking study on both credit and market risk to assist CAs in the assessment of internal models. The study should highlight potential divergences among banks or areas in which internal approaches might have the potential to underestimate their own funds requirements that are not attributable to differences in the underlying risk profiles. CAs are to share this evidence within colleges of supervisors as appropriate and take appropriate corrective actions to overcome these drawbacks when deemed necessary. Directive (EU) 2019/878 ${ }^{4}$ of the European Parliament and of the Council of 20 May 2019 amending Capital Requirements Directive IV (CRD V) has not changed this mandate.
40. The EBA has devoted significant efforts to the analysis of the consistency of outcomes in RWA, to understand the causes of possible inconsistencies and to inform the regulatory repair process. The EBA's ongoing work on benchmarking, supervisory consistency and transparency is fundamental to restoring trust in internal models and the ways in which banks calculate asset risks.
41. The use of internal models gives banks the opportunity to model their risks according to their business models and the risks faced by the bank itself. The introduction of a benchmarking exercise does not change this objective; rather, it helps to identify the non-risk-based variability drivers observed across institutions.
42. This MR benchmarking exercise is an MRWA variability assessment performed over a large sample of banks (54 banks at the highest level of consolidation in 14 jurisdictions within the EU). The banks participating in this exercise are those that have been granted permission to calculate their own funds requirements using internal models for one or more of the following risk categories:
a) general risk of equity instruments;
b) specific risk of equity instruments;

[^2]c) general risk of debt instruments;
d) specific risk of debt instruments;
e) foreign exchange risk;
f) commodities risk; and
g) correlation trading.
43. Pursuant to Article 362 of the CRR, the general risk of debt instruments should refer to interest rate risk. Similarly, the general risk of equity instruments refers to the change in value of indexes.
44. Banks that have approval only for the general risk of equity or debt instruments (in accordance with Article 363 of the CRR) may use a different definition of general risk (e.g. by including credit spread risk in the interest rate general risk) if they are able to demonstrate that it leads to higher RWA. Separate permission is required for each risk category. Many banks do not have permission for internal models for all risk categories, so the number of contributions for each hypothetical portfolio in this exercise varies across the sample.
45. Banks that have permission to use the internal model for calculating $M R$ own funds requirements for one or more - but not all - of the risk categories in accordance with Article 363(1) of the CRR ('partial use') exclude certain risks or positions from the scope of the internal model approval. In this case, the own funds requirements for the risk categories outside the scope of the internal model are calculated according to the standardised approach.
46. In addition, as set out in Article 369(1)(c) of the CRR, banks should conduct validation exercises on hypothetical portfolios to test that the model is able to account for particular structural features. These portfolios should not be limited to the portfolios defined in this exercise; however, this exercise is a useful starting point for banks to meet this legislative requirement.
47. The assessed MR results, when provided and where applicable, are VaR, sVaR, IRC and APR figures for specific and aggregated trades. Moreover, a preliminary assessment of IMV was performed, primarily to ensure that the participating banks make uniform assumptions when entering the hypothetical trades.
48. In addition to these submissions, banks using an HS approach for VaR were requested to provide one year of P\&L data for each of the individual and aggregated portfolios modelled. The objective of collecting this additional information was to employ the data vector to perform alternative calculations for VaR using, where possible, a consistent 1-year lookback period and controlling, as far as possible, for the different options that banks can apply within regulation.
49. Regulation (EU) 2019/876 ${ }^{5}$ of the European Parliament and of the Council of 20 May 2019 amending the Capital Requirements Regulation as regards the leverage ratio, the net stable funding ratio, requirements for own funds and eligible liabilities, counterparty credit risk, market risk, exposures to central counterparties, exposures to collective investment undertakings, large exposures, reporting and disclosure requirements (CRR II) will have a significant impact on the market risk benchmarking exercise once it is fully implemented. However, for the time being the CRR framework will be applied for the purpose of the benchmark exercise in accordance with Article 78 of the CRD.

3. Main features of the 2020 market risk benchmarking exercise

50. Based on the EBA Benchmarking ITS, the MR benchmarking exercise is carried out following three main steps. First, the EBA defines the hypothetical instruments and portfolios, which are the same for all banks in order to achieve a homogeneous and comparable outcome across the sample. Second, banks are asked to submit the data accordingly. Third, and finally, the EBA processes and analyses the data, providing feedback to CAs. During the process, the EBA supports CAs' work by providing benchmarking tools to assess banks' results and detect anomalies in their submissions.

3.1 Definition of the market risk hypothetical portfolios

51. The MR portfolios have been defined as hypothetical portfolios composed of both non-CTPs and CTPs, as set out in Annex V of the Benchmarking ITS. The exercise includes 73 instruments recombined in 59 general portfolios (53 individual and 6 aggregated), capitalised under the VaR, sVaR and IRC models, comprising mainly plain vanilla and some complex financial products in all major asset classes: EQ (18 instruments and 10 individual portfolios), IR (19 instruments and 16 individual portfolios), FX (11 instruments and six individual portfolios), CO (four instruments and three individual portfolios) and CS (21 instruments and 18 individual portfolios). The EBA also designed aggregated portfolios, obtained by combining individual ones, to take into account diversification effects. Each aggregated portfolio has a particular composition: the first (portfolio 57) encompasses all asset classes; the second (portfolio 58) is made up of only EQ portfolios; the third (portfolio 59) is made up of only IR portfolios; the fourth (portfolio 60) is made up of only FX portfolios; the fifth (portfolio 61) is made up of only CO portfolios; and the sixth (portfolio 62) is made up of only CS portfolios.
52. In addition, the set of portfolios includes two instruments and four portfolios (three individual and one aggregated) used for correlation trading activities, capitalised under the VaR, sVaR and APR models. These portfolios contain positions in index tranches referencing the iTraxx Europe index on-the-run series. The portfolios are constructed by hedging each index tranche with the iTraxx Europe index on-the-run 5-year series to achieve a zero credit spread value of 1 basis point (CS01) as of the initial valuation date (spread hedged). No further re-hedging is required.
53. A more detailed explanation of the portfolios can be found in the Benchmarking ITS on the EBA website. ${ }^{6}$

3.2 Data collection process

54. The data for the supervisory benchmarking exercise were submitted by banks to their respective CAs using the supervisory reporting infrastructure. Banks submitted the specified templates provided in the ITS, where applicable.

3.2.1 IMV

55. The reference date for IMV was 26 September 2019, 5.30 p.m. CET. Banks entered all positions on 19 September 2019 ('reset or booking date'), and, once positions had been entered, each instrument aged for the duration of the exercise. Furthermore, banks did not take any action to manage the instruments in any way during the entire exercise period.
56. The IMV figure to be reported by the banks for each hypothetical instrument was defined as the mark to market of the instrument at the booking date plus the profit and loss from the booking until the valuation date and time. Therefore, it was the mark to market of the instrument on 26 September 2019, 5:30 p.m. CET.

3.2.2 Risk measures

57. Pursuant to the common instructions provided, banks should calculate the risks of the positions without taking into account the funding costs associated with the portfolios (i.e. no assumptions are admitted with regard to the funding means of the portfolios). Moreover, banks should exclude, as far as possible, counterparty credit risk when valuing the risks of the portfolios.
58. Banks should calculate the regulatory 10-day 99% VaR on a daily basis. sVaR and IRC may be calculated on a weekly basis. sVaR and IRC should be based on end-of-day prices for each Friday in the time window of the exercise. For the four CTPs (54-56 and 63), APR was also requested.
59. For each portfolio, banks were asked to provide results in the base currency, as indicated in Annex V of the Benchmarking ITS. The choice of base currency for each trade was made to avoid polluting results with cross-dependencies on risk factors.
60. All collected data underwent a preliminary analysis to spot possible misinterpretations of the common instructions set out in the ITS/RTS on benchmarking and outliers, as defined hereafter.

3.3 Participating banks

61. A total of 54 banks representing 14 EU countries participated in the exercise (see Table 18 in the annex). All EU banks with MR internal models approved by CAs were asked to submit data at all levels where own funds requirements are calculated. The EBA collected the results only at the highest level of consolidation.
62. CAs are in charge of conducting similar benchmarking investigations for results at a 'solo' level within their own jurisdictions for eligible banks.

3.4 Data quality issues

63. The data collection process aims to ensure the reliability and validity of the data obtained. In this regard, it is obvious that an unwanted driver of variability (which would pollute the results) could be misunderstandings vis-à-vis the portfolios and the specific instruments included in them.
64. IMV results reached the EBA in November/December 2019, after which the EBA carried out a preliminary IMV analysis and provided CAs with a tool to help them spot likely anomalies or misunderstandings regarding the interpretation of each portfolio. This was done to enhance the quality of all risk measures so that they would be provided in accordance with a correct interpretation of the portfolios. This step was conducted before the computation of the risk measures by the banks. Where the price of an instrument fell outside a certain range, ${ }^{7}$ more investigation had to be undertaken by the CA, which could - if necessary - ask the banks in its jurisdiction for a repricing and subsequent resubmission. The same process was carried out for the risk measure submission.
65. The issue experienced in the previous exercise linked to the aggregated portfolio figures was fixed. It should be recalled that some banks reported the IMVs and risk measures for the aggregated portfolios without including all relevant components. ${ }^{8}$ The reason was that the 2018 (and previous) ITS required banks to report the value of aggregated portfolios even if not all individual portfolios are modelled for the benchmarking exercise. As a result, the submissions were not comparable with those valued in full. This issue has been addressed in the 2019 exercise, since banks have reported the results for the aggregated portfolios only if the results of all components have been submitted. ${ }^{9}$ The structure of the 2019-2020 exercise, i.e. a plurality of instruments that are recombined in a plurality of individual portfolios, which are themselves

[^3]the components of the aggregated portfolios, produced a similar error, i.e. the absence of some instrument components within some of the individual portfolios. Nonetheless, banks should not provide any (aggregated or individual) portfolios where any instrument is missing in order not to bias the risk measures analysis.
66. In the data analysis, it was clear that errors in the interpretation of some instructions and instruments are present, even though the instruments were simplified from the previous exercises and some of the general instructions remain fairly stable. A complete list of the errors in the submitted data is beyond the scope of this report, but the most common and easily avoided mistakes worth mentioning are as follows:

- Equity asset class: the problems are mainly due to the decision to put in a footnote the fact that the future positions should be multiplied by 100 contracts. Luckily, the errors generated by this drafting decision were easy to detect and fix by resubmission. The instruction in the 2020 ITS was amended such that this error should not be repeated in that exercise.
- Interest rates: good results were obtained, especially where the International Securities Identification Number was available. Minor errors were identified, such as reporting P\&L instead of mark to market, or wrong bookings (i.e. long position instead of short, or vice versa).
- FX: the only problematic instruments were 39 and 40, but the errors are quite easy to fix. Instrument 39 has been wrongly booked in many cases (i.e. short position instead of long). Instrument 40 was by far the most misrepresented: 25 out of 40 submissions were wrong. Luckily the error is quite trivial, i.e. banks reported the P\&L or zero instead of the mark to market of the position. The instructions of the 2020 ITS were amended such that this error should not be repeated in that exercise.
- Credit spread: good results in terms of CV and IQD, with very few mistakes such as evidently wrong bookings (i.e. IMVs 1,000 times the benchmark) or long position instead of short, or vice versa.
- P\&L submission: it has been noted that several banks reported the P\&L even though they were not required to do so, while others did not report it even though this was a requirement. Only banks with historical simulation models have to report the P\&L vectors in order to produce a consistent analysis of the risk measures. Furthermore, even though it was very well specified, some banks reported a 10-day P\&L vector instead of the 1-day P\&L. Although easy to spot, this mistake involved resubmissions of the result, and two banks' submissions were excluded because of this. Moreover, the P\&L series sometimes did not respect the parameters requested in the ITS (e.g. excessively short time series, wrong dates), so again these vectors have to be dropped in the analysis.

67. Although a large number of these mistakes were detected thanks to the EBA data analysis and corrected by resubmission/cleansing of the data from the banks, unnoticed errors in data submission could still be present in the dataset analysed, and this can potentially drive and pollute the results.
68. Ensuring data quality is a fundamental step for this kind of exercise. However, reporting errors might still occur in the running the future exercises, and the process will allow both regulators and participating banks to learn from it.

4. Market risk benchmarking framework

69. The benchmarking exercise aims to assess the variability in banks' MR models and to identify the drivers that account for it. Variability in banks' models can come from three types of drivers.
70. First, variability can stem from banks' modelling choices that are explicitly envisaged in the regulation. For example, when modelling VaR institutions can choose to use a lookback period longer than the minimum (i.e. the previous year), use a weighting scheme for the data series, calculate the 10-day VaR directly or, alternatively, obtain a 1-day VaR and rescale it using the square root of time approximation. Likewise, when modelling IRC, banks can choose from several sources of the probability of default (PD) and have a certain degree of freedom when choosing the transition matrices applied, or when deciding on the liquidity horizon applied to a particular instrument. It should be highlighted that all of these possibilities are, in principle, acceptable under the current regulatory framework (the CRR), provided that they have been agreed on with the CA during the approval process. Therefore, given the wide range of approaches that each institution using internal models can choose to implement, some degree of variability is expected.
71. Second, there are other modelling choices that are not explicitly envisaged in the regulations, which may cause variability. Examples include differences in simulation engines, differences in pricing model assumptions, the modelling of returns, volatility, correlations and other indirect parameter estimates, additional risk factors considered in the models, different approaches to P\&L computation and attribution, and a stochastic framework for the simulated shocks.
72. Finally, another source of potential variability originates from supervisory practices. In particular, the use of regulatory add-ons in the form of both VaR and sVaR multipliers and additional capital charges (e.g. to encompass risk not in VaR issues, any information technology (IT) and organisational weaknesses, independent pricing valuations or detected flaws) and, quite significantly, the application of limits to the diversification benefits applied by banks (i.e. not allowing a single calculation at consolidated level and, instead, requesting an aggregation of the capital results at sub-consolidated and/or subsidiary levels) are likely to increase the observed variability in capital. In most cases, these supervisory actions have been established to address known flaws or model limitations, or to add an additional layer of prudence. Therefore, they typically result in higher capital requirements than would otherwise be the case. However, they can also increase the variation in market own funds requirements between banks, particularly across jurisdictions. Although the effects on capital levels of these supervisory actions can be substantial, a benchmarking portfolio exercise is not suitable for assessing some of these supervisory actions. In particular, any constraints on diversification benefits and direct capital add-ons cannot be properly assessed, since these effects are entirely portfolio-dependent. To assess these effects, it would be necessary to use a much more realistic (hypothetical) portfolio,
comprising thousands of instruments and including partial model approval. Nevertheless, some supervisory actions can be assessed and the effects of regulatory add-ons on the VaR and sVaR multipliers will be analysed as part of this assessment.
73. Possible additional drivers of variation include:

- misunderstandings regarding the positions or risk factors involved, which could not be resolved during the preliminary assessment (see Section 3.2);
- non-uniform market conventions and practices adopted in the hypothetical portfolio booking;
- incompletely implemented models (e.g. because a pricing module is under testing, or an additional risk factor is being taken into consideration);
- missing risk factors not incorporated in the model;
- differences in calibration or data series used in the modelling simulation;
- additional risk factors incorporated in the model;
- alternative model assumptions applied; and
- differences attributable to the methodology used (i.e. Monte Carlo (MC) versus HS or parametric).

4.1 Outlier analysis

74. After the data quality assurance process, the EBA performed an 'extreme value' analysis aimed at excluding from the computation of the benchmarks those values for which the IMV and risk measures (RMs: VaR, SVaR, P\&L VaR, ES) were found to lie outside a certain tolerance range, due to misinterpretation of the trade or mistyping of bookings by the banks.
75. The presence of clear outliers in the data used to assess variability is deemed inappropriate, since these data points are likely to weigh heavily on the results, distorting the actual level of variability observed.
76. Extreme IMVs and RMs are defined as values outside the range of two truncated standard deviations ${ }^{10}$ from the median. Since some results exhibited empirical distributions that had fatter tails than expected, outliers were defined as values differing by twice the truncated standard deviation or more from the median.

[^4]77. If a bank's IMV or RM are found to be an extreme value for a particular instrument, then this observation is removed from the computation of the final benchmark statistics. The empirical evidence indicates that excluding the RMs based solely on IMV submissions, as in the previous exercise, implied that some extreme RM submissions are wrongly reflected in the benchmarking computation, while some good observations are removed. Changing this methodology did not influence the benchmarking data point, i.e. the median result. In addition, the overall dispersion of the portfolio was only marginally affected (slightly improved). The significant enhancement is in the communication to the CAs of the significant outliers to be examined with the bank. This approach increased the overall quality of the benchmark data, providing more consistency for the benchmarks of these metrics.
78. The dispersion across the contributions is summarised by the IQD coefficient, which is more robust than the coefficient of variation (CV) for data derived from fat-tailed distributions. The higher the IQD, the more dispersed the data. IQD is defined as:
$$
I Q D=\operatorname{abs}\left[\left(Q_{75 t h}-Q_{25 t h}\right) /\left(Q_{75 t h}+Q_{25 t h}\right)\right]
$$
where $Q_{75 \text { th }}$ and $Q_{25 \text { th }}$ denote the 75th and 25th percentiles respectively.
79. Another metric used in the variability studies is the CV, which is defined as the ratio between the standard deviation ${ }^{11}$ and the mean (in absolute value):
$$
C V=a b s[S t D / M e a n] .
$$
80. The analysis reports both metrics because they jointly allow detection of the highest peaks of variability.

[^5]Table 1: IMV statistics and extreme values
EU Statistics for IMV by instrument

		Main statistics								Percentiles			
	Instr. ID	Min	Max	Ave.	STDev	STDev_trunc ${ }^{1}$	MAD (median absolute deviation)	Coefficient of variation (STDev/Mean)	Num obs. ${ }^{2}$	25th	50th	75th	IQD
Equity	\%	3,417,000	3,426,000	3,420,015	2,191	3,835	475	0\%	35	3,419,000	3,419,358	3,420,907	0\%
	2	645,962	646,900	646,167	187	865	0	0\%	37	646,100	646,100	646,134	0\%
	3	-628,611	-619,756	-623,431	1,671	4,946	598	0\%	35	-623,736	-623,565	-622,624	\%
	4	-221,484	-216,009	-219,040	846	1,732	215	0\%	36	-219,215	-219,048	-218,785	0\%
	5	-2,031,214	$-2,016,671$	-2,020,499	3,549	13,880	1,701	0\%	37	-2,020,991	-2,020,146	-2,017,960	\%
	6	-14,879	-14,547	-14,645	67	132	25	1\%	33	-14,672	-14,633	-14,610	0\%
	7	-68,234	-67,405	-67,841	159	255	13	0\%	35	-67,825	-67,781	-67,781	0\%
	8	-105,266	-103,376	-104,466	508	1,084	233	1\%	36	-104,701	-104,436	-104,225	0\%
	9	49,755	56,397	52,859	1,561	2,204	1,062	3\%	32	51,611	52,524	53,694	2\%
	10	-65,545	-57,401	-61,764	1,835	2,161	977	3\%	35	-62,854	-61,558	-60,890	2\%
	11	6,823	8,399	7,658	389	497	292	5\%	34	7,381	7,678	7,942	4\%
	12	15,432	17,788	16,698	574	707	420	3\%	36	16,300	16,688	17,112	2%
	13	36,363	42,296	39,653	1,396	1,739	781	4\%	34	38,858	39,775	41,023	3%
	14	-33,000	-26,748	-30,048	1,355	1,774	489	5\%	33	-30,556	-30,214	-29,594	2\%
	15	1,385	2,045	1,675	153	230	70	9\%	34	1,598	1,671	1,737	4%
	16	2,622	3,642	2,996	245	360	104	8\%	33	2,844	2,936	3,051	4%
	17	-1,088,500,000	$-1,075,717,439$	$-1,080,902,937$	2,913,102	4,809,483	1,060,463	0\%	31	$-1,081,589,692$	$-1,080,324,768$	$-1,079,000,000$	0\%
	18	991,598	1,098,000	1,064,747	21,184	45,319	11,345	2\%	33	1,055,473	1,066,046	1,076,393	1%
Interest Rote	19	10,493	17,234	14,028	1,649	2,325	1,375	12\%	43	12,982	13,977	15,468	9\%
	20	-85,914	-74,995	-81,766	1,995	3,490	932	2\%	42	-82,782	-81,918	-80,917	1\%
	21	30,059	49,558	39,599	4,316	5,258	2,878	11\%	45	36,000	39,916	42,035	8\%
	22	7,939	14,835	10,053	1,027	2,856	423	10\%	48	9,464	10,135	10,484	5\%
	23	1,027,972	1,149,311	1,087,992	35,665	38,965	23,811	3\%	20	1,056,236	1,100,966	1,115,733	3%
	24	7,495,359	7,507,654	7,503,403	2,480	22,458	1,559	0\%	40	7,501,816	7,502,537	7,504,913	0\%
	25	-2,229,015	-2,226,664	-2,227,145	401	4,435	252	0\%	39	-2,227,357	-2,227,000	-2,226,831	0\%
	26	5,625,273	5,824,424	5,772,696	30,324	111,579	2,929	1\%	31	5,774,954	5,775,739	5,780,383	0\%
	27	1,189,650	1,194,498	1,192,034	628	1,333	176	0\%	39	1,191,854	1,191,946	1,192,237	0\%
	28	7,528,168	7,547,664	7,533,306	3,809	96,223	2,063	0\%	37	7,530,241	7,531,317	7,534,819	0\%
	29	-6,446,726	-6,412,948	-6,442,404	5,864	49,711	1,056	0\%	38	-6,444,766	-6,443,146	-6,442,644	0\%
	30	-10,854,532	-10,846,020	-10,852,298	1,850	11,800	958	0\%	38	-10,853,646	-10,852,148	-10,851,731	0\%
	31	7,512,575	7,614,553	7,592,499	35,573	131,119	2,279	1\%	47	7,604,906	7,609,741	7,610,938	0\%
	32	6,019,847	6,032,498	6,022,967	2,695	10,452	735	0\%	38	6,021,515	6,021,933	6,023,036	0\%
	33	$-10,385,050$	-10,327,340	-10,374,459	17,506	26,574	1,617	0\%	40	-10,382,541	-10,380,435	-10,377,937	0\%
	34	4,830,481	6,641,906	5,624,744	276,269	996,015	40,211	5\%	35	5,521,781	5,671,625	5,712,730	2\%
	35	5,275,000	5,474,598	5,364,573	43,871	52,480	5,807	1\%	36	5,358,649	5,379,639	5,382,932	0\%
	36	-68,346	-48,898	-59,248	4,063	6,137	2,186	7\%	47	-61,706	-58,821	-57,371	4%
	37	-18,598	-12,338	-15,627	1,495	1,819	803	10\%	45	-16,592	-15,735	-14,230	8\%
FX	${ }^{38}$	-31,282	31,000	-11,390	10,687	23,160	4,972	94\%	40	-15,655	-11,665	-6,450	42\%
	39	-104,130	9,681	-54,889	21,562	29,387	14,350	39\%	40	-70,192	$-48,413$	$-44,301$	23\%
	40	875,872	915,418	910,251	9,113	292,080	585	1\%	41	912,407	913,709	914,308	0\%
	41	34,965	39,913	37,927	1,390	2,158	1,012	4\%	40	36,947	37,850	38,962	3\%
	42	1,124,771	1,155,537	1,138,758	7,608	8,506	4,776	1\%	40	1,133,781	1,139,510	1,143,731	0\%
	43	-321,236	-301,523	-311,649	4,849	5,444	2,782	2\%	39	-314,385	-311,659	-307,339	1\%
	44	-133,688	-122,472	-127,851	3,132	4,296	2,534	2\%	38	-130,397	-127,033	-125,105	2%
	45	1,154,155	1,175,916	1,166,270	5,253	5,529	2,941	1\%	40	1,163,567	1,165,195	1,170,171	0\%
	46	-978,798	-961,319	-972,291	3,752	6,773	1,739	0\%	37	-974,153	-972,732	-970,902	0\%
	47	-57,371	113,651	34,444	47,070	47,070	15,056	137\%	39	6,676	19,914	86,829	86\%
Commodities	48	16,284	36,359	25,156	5,441	7,069	3,837	22\%	20	20,352	25,320	29,131	18\%
	49	-37,616	-14,849	-25,006	5,985	6,775	3,851	24\%	21	-27,979	-24,885	-19,923	17\%
	50	133,496	187,116	161,354	11,107	14,839	6,692	7\%	18	154,458	160,197	167,739	4%
	51	-151,178	-121,546	-136,509	7,269	8,336	4,245	5\%	17	-140,078	-136,458	-131,665	3\%
Credit Spread	51	-29,855	-27,426	-28,933	452	1,178	193	2\%	30	-29,147	-28,981	-28,739	1%
	53	16,694	18,795	17,917	428	1,029	124	2\%	27	17,777	17,849	18,012	1\%
	54	28,172	30,365	29,710	544	1,339	184	2\%	31	29,609	29,881	29,925	1\%
	55	7,077	8,590	7,777	380	641	231	5\%	27	7,365	7,858	8,050	4\%
	56	16,788	19,480	17,789	771	1,029	266	4\%	27	17,402	17,541	17,828	1\%
	57	-35,621	-32,929	-34,198	562	721	242	2\%	30	-34,554	-34,299	-34,007	1\%
	58	31,970	33,056	32,524	208	301	93	1\%	29	32,414	32,483	32,655	0\%
	59	-27,146	-22,893	-25,056	672	1,999	72	3\%	29	-25,161	-25,092	-24,988	0\%
	60	13,476	16,947	15,593	798	1,201	365	5\%	29	15,309	15,858	15,948	2\%
	61	-19,147	-16,305	-18,132	743	1,054	262	4\%	27	-18,628	-18,262	-17,988	2\%
	62	16,349	17,937	17,102	338	513	124	2\%	29	16,939	17,075	17,116	1\%
	${ }^{63}$	29,707	30,569	30,353	169	336	80	1\%	29	30,298	30,346	30,475	0\%
	64	33,202	34,569	33,984	344	488	238	1\%	26	33,744	34,039	34,268	1%
	65	39,153	42,548	40,821	668	896	238	2\%	31	40,646	40,942	41,141	1\%
	66	-40,932	-39,373	-40,124	344	451	150	1\%	30	$-40,297$	-40,124	$-40,004$	0\%
	67	-5,153	-3,076	-4,012	447	701	168	11\%	30	$-4,274$	-3,975	-3,830	5\%
	68	993,610	998,560	996,346	1,225	1,834	542	0\%	28	995,624	996,654	997,044	0\%
	69	117,004	124,788	121,059	1,998	2,363	805	2\%	29	119,988	120,690	122,205	1\%
	70	1,017,780	1,031,106	1,025,663	3,556	4,207	1,313	0\%	31	1,024,877	1,025,790	1,027,933	0\%
	71	1,025,690	1,038,939	1,035,543	4,790	6,300	752	1\%	33	1,036,897	1,037,794	1,038,553	0\%
	72	$-1,010,623$	-1,006,900	-1,009,614	1,023	1,581	279	0\%	33	-1,010,254	-1,010,013	-1,009,589	0\%
	73	1,087,978	1,091,711	1,090,479	804	4,749	246	0\%	28	1,090,032	1,090,487	1,090,982	0\%
Correlation Trading	74	134,965	206,607	168,525	23,867	23,867	13,370	14\%	8	151,763	165,128	186,423	10\%
	75	128,785	166,569	142,552	14,158	14,158	847	10\%	5	138,572	139,418	139,418	0\%

${ }^{2}$ Refers to the number of banks included in the computation of the statistics

Table 2: Average IMVs' interquartile dispersion by asset class
Average Interquartile dispersion by asset class

	Interquartile range 2020 exercise	Interquartile range 2019 exercise	Interquartile range 2018 exercise
Equity	1%	2%	2%
IR	2%	3%	8%
FX	16%	15%	6%
Commodity	10%	6%	8%
Credit spreads	1%	3%	6%
CTP	5%	8%	103%

81. Table 1 and Table 2 depict the results at the level of both each individual instrument and each risk type. As shown, the highest dispersion at the level of the individual instruments is detected for FX instrument 47 (CCSwap) (IQD 86\%). This high dispersion was due to the flawed submission of the instrument by a large number of banks. It should be recalled that for instrument 47, a substantial amount of additional details was provided in the 2020 ITS. The instructions include the definition of the cash balance of CCSwap. In the ITS 2020 the cash balance was 'included', but a plurality of banks submitted, inconsistently with respect to the instructions, this as 'cash balance excluded', claiming this was the industry practice. This caused a clustered submission for this instrument, as shown in Figure 2. In order to avoid this issue, the ITS 2021 updated the clause as 'cash balance excluded', meeting the industry standard and hopefully lowering the dispersion of this instrument.
82. Besides the CCSwap, also the FX Fwd (instruments 38-39 shown IQD above 15% (42% and 23%). The perception with regard to these submissions, besides some trivial errors such as inverted bookings (long instead of short), is that minimal changes in the parameter cause a significant change in the IMVs. It should be noted also that the absolute difference between the $25^{\text {th }}$ and $75^{\text {th }}$ quantile is stable, or decreased for instrument 38 , but also that the absolute value of the instrument is decreased, and tends toward zero. This tends to inflate the IQD index of these instruments. Excluding these instruments gives us an average IQD for the FX asset class of 1\%, which can be interpreted as a very low dispersion.
83. Besides these FX instruments, commodity instruments 48 and 49 present IQDs barely above 15%. The level of dispersion is slightly higher than in the previous exercise. As for the FX product, it should also be noted that the absolute difference between the $25^{\text {th }}$ and $75^{\text {th }}$ quantile is stable, so it seems that the quality of the submission is comparable to that of the previous exercise.
84. Overall, the IQD by asset class for the instrument of the 2020 exercise is significantly lower than in the past exercises for the equity, interest rate and credit spread asset classes. This means that the adjustment to the 2020 instructions, together with the simplification of the instrument
already included in the instructions for the 2019 exercise have achieved the desired outcome of obtaining a generally low IQD of the instruments in the exercise.
85. Comparing the 2020 instruments with the 2019 instruments purely on the basis of the IQD, it would appear that the quality of the data increased.
86. From a more aggregated risk-type perspective, EQ, IR and CS instruments show the lowest dispersion, indicating an improvement versus 2019. This was expected for CDS, where additional details were provided in the 2020 instructions to reduce ambiguities in interpretation with regard to booking the instruments.
87. CTP IMVs show a slightly higher dispersion (5\%), since there are actual differences in market practices and assumptions/conventions between banks (i.e. choice of on-the-run iTraxx Europe series, choice of coupons and tranching assumptions). Furthermore, the high IQD for the FX class is driven mainly by three instruments (38,39 and 47). The commodity class shows an aggregated IQD of 10%, which is slightly higher than in the previous exercises.
88. A cluster analysis (see Figure 1, Figure 2, Figure 17 and Table 3) was performed to strengthen and deepen the aforementioned descriptive insights. It shows the dispersion of the IMVs by instrument and helps in identifying clusters in the instruments' pricing that could explain the scattering of IMVs for some trades. Despite all our data quality assurance efforts, the results of this analysis suggest that the clusters observable for some instruments are brought about by different feasible interpretations of the instruments.

Table 3: IMV cluster analysis - number of banks by range

2020 IMV cluster analysis by instrument: number of banks by range ($X=$ ratio with the median)

89. In particular, as shown in Table 3 and Figure 2:

- Instruments 6 and 15-18 (EQ): there are generally few extreme outlier observations, compared with a low IQD (4\%), which does not represent a substantial problem for the CAs.
- Instruments 19, 21, 37 (IR): only a few observations are extreme outliers with an IQD above 8%.
- Instruments 38-39 and 47 (FX): there are many significant outliers with a high IQD, explained by the misinterpretation of instrument 47 (see also data quality issues in Section 3.4 of the report) and the low absolute value of instrument 38.
- Instruments 48-49 (CO): there are only few significant outliers, which inflate the IQD significantly due to the small number of overall observations.
- Instrument 67 (CS): in this sovereign CDS short position the other IMVs are very small and close to zero, which inflates the IQD with respect to the rest of the instruments in the asset class.

90. Some of these extreme outlier banks were classified as a high priority for the CAs (see also Chapter 6), so they were followed with greater attention during the exercise in order to specifically define the reason for the extreme result.
91. Other kinds of difficulties were found for CTPs, principally because of the scarcity of contributions and the complex nature of these trades, along with their spread hedging. However, based on the observed IMV results there is slightly more pricing consistency for the second CTP, instrument 75 , which refers to a long-hedged position on an equity tranche of the iTraxx EU index (attachment 0\%; detachment 3\%). This is due to the more standard market tranching points.
92. One source of variability for these instruments relates to the index hedge practice. Commonly, the index hedge seems to be made at the point of inception of the trade when a CS01 spread hedge tranche is traded. However, a couple of banks did not comply with this market practice. Moreover, variability in the IMV and risk measures results could also occur if the banks calculated different hedge ratios (i.e. the ratio of the change in the mark to market of the tranche to the change in the mark to market of the index for a shift in the credit curve for all underlying names) based on their proprietary pricing models.
93. In the past, some banks erroneously computed the IMV results as a P\&L from the booking date to the valuation date. In order to achieve a uniform interpretation, the EBA issued a question and answer (Q\&A) tool that defined the IMV as the mark to market at the valuation date and
time for each trade. ${ }^{12}$ This has helped in the exercise, and this error seems to be present only in a limited number of cases (few banks reported the P\&L for instrument 40).
94. Some minor misalignments in the IMV have been detected due to the reporting of the 'clean price' (i.e. the price of a trade excluding the accrued interest) instead of the 'dirty price' (i.e. the price of a trade including any interest), which is what was intended for the mark to market valuation. This has been detected especially in the bond price, such as instruments 24-35.
95. In addition, the EBA recommends that banks make better use of the Q\&A tool by submitting questions before the start of the exercise to avoid misinterpretations in the future. Banks are kindly invited to provide, using the Q\&A tool, their best practice and market standard conventions when further specifications of the hypothetical trades are needed.
96. Evidence from a large majority of the banks is that IMV comes from front office systems. This is acknowledged as the best practice for alignment with real market-trading activities.
97. Figure 1 and Figure 2 report the clusters found in the IMV results for a sample of low IQD instruments (0% IQD or close to zero) and high IQD (the highest in the asset class) instruments. All the instruments' IMV distributions are available in the annex in Figure 17.

Figure 1: IMV scatter plots - low-IQD instruments

Figure 2: IMV scatter plots - high-IQD instruments

99. This result is consistent with that reported following last year's MR benchmarking exercise, demonstrating once again that the simplification of the instruments resulted in a decrease in the number of outliers.
100. Given the EBA's experience with past benchmarking exercises, values lying in this range might be considered acceptable on the basis of fine-tuning as successive benchmarking exercises are run. Nevertheless, the aim will be to increase this IMV empirical range coverage in the next exercises.
101. For many hypothetical instruments, the IMV variability is explained by the divergence in terms of both fixings and market practice assumptions by the participating banks. Therefore, the interpretation of the deals and market practices substantially explain the observed variability.

4.2 Risk and stressed measures assessment

102. For VaR and sVaR, variability was assessed by using the banks' reported VaR and sVaR over a 2-week period (from 20 January 2020 to 31 January 2020). Banks submitted weekly or daily observations, depending on their models, and the final risk measures by portfolio were obtained by averaging the observations over the 2 weeks.
103. In the sample, 16 out of 50 banks calculated weekly sVaR measures. The remaining two thirds of the participating banks computed daily sVaR measures.
104. In addition, a P\&L VaR measure produced by the EBA using the P\&L data provided by banks via an HS approach was analysed. The relevant banks delivered a yearly 1-day P\&L vector for each of the individual and aggregated portfolios modelled. These were used to compute the P\&L VaR.
105. The additional P\&L information for non-APR portfolios allowed the EBA to compute the alternative measure for VaR previously defined, and to check the variability of the results across banks by calculating VaR using a 1-year lookback period.
106. Additional checks were carried out for the available P\&L vectors, such as the 1-day P\&L versus the 10-day P\&L (either overlapped or not), where applicable. Furthermore, the time series with the wrong time window were dropped. P\&L vectors provided by banks with no HS model were also dropped. A final consistency check across the HS banks entailed computing the ratio between P\&L VaR and the regulatory VaR provided, which can be expected to be close to $1 .{ }^{13}$

[^6]107. Clearly, the P\&L VaR assessment is possible only for banks applying an HS approach, and with at least 185 days of results submitted. Accordingly, banks applying an MC or parametric approach, or another approach other than HS, cannot be subject to this assessment, and have been dropped from the sample (see also Section 3.4, 'Data quality issues').
108. The P\&L VaR was computed as the absolute value of the empirical first percentile of the P\&L vector rescaled to 10 days by applying the square root of time approximation, without applying any data-weighting scheme: ${ }^{14}$
$$
V a R_{99 \%}^{10 d a y}=\sqrt{10} * V a R_{99 \%}^{1 d a y}
$$
109. The P\&L vector is used to assess the degree of P\&L correlation across banks, as well as the level of volatility shown in each bank's vector. This analysis should provide useful insights into the degree of market consensus on the relevant risk factors in terms of both market dynamics and volatility levels. Obviously, this analysis, like most of those discussed here, relies on sufficient data points and portfolios being modelled by banks to ensure robustness and consistency.
110. The IRC analysis cannot be deepened like that for VaR because of the higher level of confidence (99.9\%) and longer capital horizon (1 year) applied in these metrics. Nevertheless, a variability analysis was performed. In the paragraph concerning IRC, particular emphasis is reserved for missing, zero or unrealistically low results, which suggest that key underlying risk factors are not efficiently captured by the IRC internal model.
111. In the sample, 16 out of 34 banks computed weekly IRC measures.
112. It is apparent that more complex risk measures, such as IRC, are computed at a less frequent pace (i.e. weekly basis instead of daily basis).
113. For APR, only a small number of contributions were submitted because of the scarcity of approved internal models on CTPs and because most institutions consider the CTP business to be declining significantly as a result of the recent financial crisis. Therefore, the sample is quite limited.
114. In the sample, five out of eight banks computed weekly APR measures.

[^7]115. The ES, as an alternative risk metric to VaR , has been estimated from the daily P\&L series by averaging the P\&L observations below the 2.5 th percentile converted by the square root of time approximation and taking the absolute value:
$$
E S_{97.5 \%}^{10 d a y}=\sqrt{10} * E S_{97.5 \%}^{1 d a y}=\sqrt{10} \frac{1}{n} \sum_{i=1}^{n} P \& L_{t_{i}}
$$
where $n=$ number of days describing the 2.5 th quantile rounded to the highest decimal.
116. For the aggregated portfolios, diversification effects were checked with regard to the VaR, sVaR and IRC metrics, regardless of whether they were provided or estimated.
117. For the most inclusive portfolios - i.e. the aggregate portfolios - the implied capital charges were also computed and their variability analysed. Where possible, the idiosyncratic factors that drive variability and the impact of regulatory add-ons (e.g. multipliers) were analysed.
118. It is worth noting that, although the effects on capital levels of these supervisory actions can be substantial, an HPE is not suitable for assessing such differences. This is especially the case for diversification benefits since these effects are entirely portfolio-dependent. More on this is included in the following subsection entitled 'Limitations'.
119. Finally, to make the analysis more comprehensive, CAs were asked to complete a questionnaire about the takeaways from this benchmarking analysis and the actions they plan to take to overcome potential weaknesses in the banks' MR models (see Section 6 of this report). Thanks to the interview process, the EBA had the opportunity to discuss directly some issues raised by CAs when challenging the models in the ongoing assessment process.

4.2.1 Limitations

120. The design of the benchmarking portfolio exercise described in the ITS aims to ensure the quality of the data used in the report to be produced by the EBA and, more importantly, to identify the banks and portfolios that need specific attention from the responsible CAs. Nevertheless, any conclusions regarding the total levels of capital derived from the hypothetical data should be treated with due caution. The hypothetical portfolios are very different from real portfolios in terms of size and structure. What is more, the data cannot reflect all actions taken by supervisors.
121. From a methodological perspective, the sVaR metric variability observed could originate either from differences in modelling or from the different data periods used for sVaR computation. Further variability stems from banks' different stress periods because there is no common benchmarking stress period. To allow more specific analysis of this aspect, in the 20192020 benchmarking exercise more information about the stressed VaR time window was requested from banks by expanding the relative template envisaged in Annex VI of the Benchmarking ITS (in this regard, see subsection 5.2.5.d, 'Common stress period considered', below).
122. Another limitation that was tackled in this exercise is to produce a segregated analysis for institutions with partial model approval (e.g. general risk only) in order to split the result for portfolios with specific risk to filter the additional unwarranted dispersion of VaR figures. The benchmark analysis was run by splitting banks with full approval for equity and IR from those with partial approval in order to filter out the variability of the risk measure introduced by the partially approved banks.
123. Banks with partial model approval provided insights into how they approached the benchmarking exercise. It has been found that the differences reported by the banks in respect of the EBA's benchmark measure are almost entirely explained by considering the internal measure of risk, which is not approved for capital purposes but is more complete in terms of risk factor coverage.
124. In summary, the reporting of partial use approval results should be continued for the purpose of the exercise. However, it should be considered within the specific sample in order to assess any bias these partial use approval results could introduce into the results for the rest of the sample observed.

5. Overview of the results obtained

5.1 Analysis of VaR and sVaR metrics

125. In a departure from the previous exercises, the dataset used to perform the assessment of risk measures for the 2020 exercise was determined on the basis of the actual dispersion of the risk measures analysed. The outcome of the IMV extreme value analysis was used as an early indication of the potential problem to be reported to banks by their CAs. As explained in Section 4.1, banks' data were taken into account only for portfolios for which the RM is between the benchmark ($50^{\text {th }}$ percentile) +/- two times the truncated standard deviation in the portfolio analysed. The rest was classified as an outlier. As shown in Figure 26, we can see that this methodology is not affected by the issue of excluding RMs that are clearly consistent with the benchmark.
126. To check if submissions (by portfolio) were at least approximately symmetrically distributed around the mean and/or the median, the EBA checked for any significant differences between the mean and median values for the truncated sample. Table 20 in the annex reports the banks' VaR results in relation to the median, aggregated into six buckets, to enable detection of unexpected clusters.
127. As Table 20 and Table 21 clearly show, a relatively high variability of the VaR (above 20% in IQD) has been found in portfolios 4 and 7 for EQ, 24 and 25 within the IR asset class, and portfolio 33 for CO. The analysis also identifies clusters for portfolios 36, 45, 46, 47, 49, 50, 52 and 53 (credit spread). With regard to the EQ portfolio 4 (OTM options), the value is very close to zero, and this tends to inflate the IQD. Portfolio 18 features the autocallable instrument, whose exotic nature could increase the VaR. For CO portfolio 33 the high dispersion comes from a VaR of the hedge portfolio that is relatively close to zero. The high dispersion in IR and CS portfolios could be explained by a shared feature: the lack of permission for model-specific IR and the low absolute value of some of the VaR figures that tend to exacerbate the difference in the IQD figures.
128. In contrast to the previous exercise, the VaR values for CTPs (portfolios 54 to 56) are relatively high, except for portfolio 56. The small sample size and scattering of results did not allow a deeper analysis of the CTP portfolios. However, the variability analysis concerning CTPs and the results found are reported since internal models for this risk category are formally authorised and envisaged by the CRR.
129. The cluster analysis presented above is superior to a simple outlier analysis that flags submissions more than a designated number of standard deviations from the mean, as this method cannot easily be used for clustered or strongly asymmetric portfolios.

Interquartile dispersion

130. Figure 3 and Table 4 summarise the variability of the results, measured via the IQD and coefficient of variation, for the IMV as well as all three VaR measures (i.e. VaR, VaR for HS banks only and VaR calculated from the 1-year P\&L series submitted by HS banks). IQD and CV for IMV, PV, VaR and Stress VaR, divided by risk factors, are reported at the bottom of Figure 3. Table 4 also includes the VaR results for MC simulation banks and the expected shortfall.
131. In terms of risk across different assets classes, the IQDs for VaR for all the asset classes except CS are below 20\%, while the FX and IR portfolios are lower than for the other risk types. Overall, the IQD is generally slightly lower than in the 2019 exercise, where there was an average dispersion of the VaR of 21%, whereas this comes in at only 17% in the 2020 exercise. This decrease in the IQD of the VaR is likely to have stemmed from both a better understanding of the instruments/portfolio in the exercise compared with the 2019 submission (first submission with the new portfolios), but also as a result of the new methodology applied to exclude outliers in the RM submissions.
132. As expected, the IQD for sVaR is slightly higher than for VaR (see the bottom panels of Figure 3), with an average IQD of 25% (27% in 2019), while the CS asset class features a higher dispersion once again (34%; in 2019 it was 39\%). Higher SVaR dispersion is likely to be due to the differences between banks in their choice of the 1-year stress period used, which is chosen based on each participating bank's actual portfolio. It might therefore be the case that the sVaR is not calculated with respect to the 1-year period that maximises VaR for the given hypothetical portfolio.

Figure 3: Interquartile dispersion and coefficient of variation for IMV and risk metrics by portfolio

Table 4: Interquartile dispersion for IMV and risk metrics by risk factor

Average Interquartile dispersion by risk factor

	IMV	VaR (all sample)	SVaR	P\&L VaR	VaR HS banks	VaR MC banks	Exp shortfall
Equity	1%	18%	27%	13%	18%	11%	11%
IR	2%	13%	31%	12%	14%	8%	11%
FX	16%	12%	19%	9%	14%	10%	9%
Commodity	10%	20%	17%	18%	22%	9%	21%
Credit spr.	1%	23%	34%	23%	24%	23%	24%

133. Table 4 suggests there is evidence that when a homogeneous subset of banks is considered (i.e. HS or MC banks), the VaR results show less dispersion than the total sample (average 16% vs. 17\%). With regard to the P\&L VaR, it is evident that the dispersion (15\% on average) is slightly lower with respect to both HS VaR and all-sample VaR for all the asset classes. This is consistent with the assumption that fewer differences in the methodology would imply less dispersion among the risk measures.
134. When comparing variability for HS VaR and MC VaR, this year's result tells us that the MC VaR values are less dispersed than those of the HS VaR, as in the 2019 exercise. Nonetheless, the analysis needs to take account of the fact that the sample of MC banks is quite small compared with that of HS banks (i.e. 7 MC banks versus 39 HS banks). Regarding parametric banks, a similar analysis is not informative as the total number of parametric banks is very small (i.e. three banks in the sample).
135. The ratio between sVaR and VaR was also analysed across the sample (see Table 25 in the annex). Some banks have ratios below 1 for many portfolios, while other banks have extremely high ratios for some portfolios. While it is generally expected that the sVaR is greater than the VaR , the clear disparity between these values is usually a natural indication that something is wrong with the data submitted, and the EBA and CAs have to pay attention to these observations.
136. Table 5 shows the distribution of the sVaR-VaR ratio classified into three buckets (i.e. below 1, between 1 and 3, above 3) for each portfolio. It is worth noting that a significant number of portfolios for EQ and IR have a significant proportion of ratios below 1. This indicates that the (bank-level) stress period was not appropriate for these particular hypothetical trades.

Table 5: sVaR-VaR ratio by range (number of banks as a percentage of the total)

Distribution of sVaR / Var ratio over portfolios
($X=$ ratio with the median)

	Port. ID	$x>3$	$1<x \leq 3$	$\mathrm{x} \leq 1$
Equity	1	47.1\%	52.9\%	0.0\%
	2	83.3\%	16.7\%	0.0\%
	3	0.0\%	88.6\%	11.4\%
	4	16.1\%	51.6\%	32.3\%
	5	87.5\%	12.5\%	0.0\%
	6	5.9\%	82.4\%	11.8\%
	7	59.3\%	37.0\%	3.7\%
	8	3.0\%	75.8\%	21.2\%
	9	0.0\%	94.1\%	5.9\%
	10	79.4\%	20.6\%	0.0\%
Interest Rate	11	52.4\%	47.6\%	0.0\%
	12	12.8\%	64.1\%	23.1\%
	13	0.0\%	97.7\%	2.3\%
	14	51.2\%	46.5\%	2.3\%
	15	44.4\%	55.6\%	0.0\%
	16	0.0\%	87.5\%	12.5\%
	17	0.0\%	86.1\%	13.9\%
	18	2.9\%	55.9\%	41.2\%
	19	2.4\%	90.5\%	7.1\%
	20	68.4\%	23.7\%	7.9\%
	21	2.6\%	97.4\%	0.0\%
	22	53.7\%	41.5\%	4.9\%
	23	0.0\%	100.0\%	0.0\%
	24	50.0\%	44.1\%	5.9\%
	25	67.4\%	25.6\%	7.0\%
	26	5.7\%	77.1\%	17.1\%
FX	27	38.1\%	61.9\%	0.0\%
	28	15.0\%	80.0\%	5.0\%
	29	82.1\%	17.9\%	0.0\%
	30	59.5\%	40.5\%	0.0\%
	31	97.0\%	3.0\%	0.0\%
	32	96.6\%	3.4\%	0.0\%
Commodity	33	52.6\%	42.1\%	5.3\%
	34	0.0\%	94.1\%	5.9\%
	35	75.0\%	25.0\%	0.0\%
Credit Spread	36	7.4\%	70.4\%	22.2\%
	37	72.7\%	22.7\%	4.5\%
	38	72.0\%	28.0\%	0.0\%
	39	60.9\%	34.8\%	4.3\%
	40	77.3\%	22.7\%	0.0\%
	41	61.5\%	38.5\%	0.0\%
	42	39.1\%	60.9\%	0.0\%
	43	64.3\%	35.7\%	0.0\%
	44	51.9\%	48.1\%	0.0\%
	45	62.5\%	37.5\%	0.0\%
	46	42.9\%	57.1\%	0.0\%
	47	73.1\%	23.1\%	3.8\%
	48	63.0\%	37.0\%	0.0\%
	49	41.7\%	54.2\%	4.2\%
	50	3.7\%	77.8\%	18.5\%
	51	42.9\%	57.1\%	0.0\%
	52	34.8\%	60.9\%	4.3\%
	53	33.3\%	66.7\%	0.0\%
CTP	54	75.0\%	25.0\%	0.0\%
	55	40.0\%	60.0\%	0.0\%
	56	0.0\%	100.0\%	0.0\%
ALL-IN no-CTP	57	100.0\%	0.0\%	0.0\%
Equity Cumulative	58	95.7\%	4.3\%	0.0\%
IR Cumulative	59	3.2\%	83.9\%	12.9\%
FX Cumulative	60	97.1\%	2.9\%	0.0\%
Commodity Cumulative	61	0.0\%	100.0\%	0.0\%
CS Cumulative	62	66.7\%	33.3\%	0.0\%
CTP Cumulative	63	0.0\%	100.0\%	0.0\%

5.2 A closer look at the VaR and sVaR results

137. Figure 4 and Figure 5 give an overview of the VaR and sVaR results for portfolios 1 to 56, i.e. they do not include the aggregated portfolios, where fewer observations were available for the reasons explained above (see Section 3.4).
138. Broken down by portfolio, the figures show the average VaR and sVaR over the 10-day submission period for each bank, normalised by the median ${ }^{15}$ of the given portfolio. ${ }^{16}$
139. Comparing Figure 4 and Figure 5, it looks as if the dispersion is higher for sVaR than for VaR (sVaR 27\% IQD versus 18\% VaR IQD on average). Differences in dispersion between VaR and sVaR seem steady but are more marked for the credit spread portfolios, in which sVaR shows a higher level of dispersion than in the other asset classes (approximately 34\%). This is due to the higher complexity of some of these products compared to other asset classes and to the different banks' choices regarding the stress period.
140. FX and IR are the asset classes with the lowest levels of dispersion for VaR (12\% and 13\%), while for sVaR it was the CO asset class (17\%).
[^8]Figure 4: VaR submissions normalised by the median of each portfolio

VaR: all portfolios (exc. aggregated)
(ratio with the median below 50%)

Figure 5: sVaR submissions normalised by the median of each portfolio

141. Table 21 and Table 22 in the annex report all VaR and $s V a R$ statistics along with EU benchmarks for all HPE portfolios.

5.2.1 Comparison of $s V a R-V a R$ ratios

142. Banks were assessed in relation to the full sample not only by their VaR and sVaR values, but also by their sVaR-VaR ratios. In general, it should be expected that sVaR would be at least as high as VaR, as sVaR is calibrated to a 1-year period of significant stress. This is verified in 92% of cases. However, since the stress period is calibrated on a bank-by-bank basis using the banks' actual portfolios, for the hypothetical portfolios underlying the HPE the sVaR-VaR ratio could in some instances conceivably be smaller than 1.
143. Figure 6 shows the ratio of the average sVaR to the average VaR for each bank. The sVaRVaR ratio varies significantly across the portfolios. Excluding outliers, the average sVaR-VaR
ratio per portfolio varies between 0.75 and 8.15 , and has an average ratio of $2.87 .{ }^{17}$ The portfolios with the lowest levels of dispersion for the sVaR-VaR ratio (excluding outliers) are portfolios 1, 5 (EQ) and 31 (FX).

Figure 6: sVaR-VaR ratio for the average VaR and sVaR by portfolio
SVaR/VaR: all portfolios (exc. aggregated)
(ratio with the median)

SVaR/VaR: all portfolios (exc. aggregated)
(ratio with the median below 1.0)

144. A few banks have a high sVaR-VaR ratio for portfolios in certain asset classes only. This suggests that this asset class dominates the banks' real trading portfolios and, for that reason, drives the calibration of the sVaR window.

[^9] Table 20.
145. In line with the higher dispersion observed for the sVaR for this asset class, in terms of the ratio the (average) dispersion for credit spread portfolios is also higher than the dispersion for the other asset classes.

5.2.2 Drivers of variation

146. Based on the qualitative information provided by banks (Figure 7 to Figure 11), the most common methodological approach used by banks to model MR is HS (72\%). Although the majority of banks use the same methodological approach, the dispersion of VaR remains significant because other modelling choices play a key role in producing variability of the risk measures (e.g. differences in time scaling and/or weighting scheme choices, absolute versus relative returns for different asset classes).

Figure 7: Qualitative data: VaR methodological approaches

Figure 8: VaR submissions normalised by the median of each portfolio (by methodological approach)

VaR: all portfolios (exc. aggregated)
(ratio with the median below 50\% - HS banks in orange

147. With regard to the regulatory 10-day VaR computation, by far the preferred method is rescaling the 1-day VaR to the 10-day VaR using the square root of time approximation.

Figure 9: Qualitative data: VaR time-scaling techniques

148. Concerning the historical lookback period used to calibrate banks' VaR models, more than half of the banks use the minimum period of one year. Only a minority (5 out of 53) of the banks use a period greater than two years.

Figure 10: Qualitative data - length of VaR lookback period

149. As for the possible use of a data-weighting scheme, the great majority of banks' models use unweighted data in the regulatory VaR computation (43 out of 53 respondents, or 81%).

Figure 11: Qualitative data - VaR weighting choices

150. Finally, with regard to supervisory actions on regulatory add-ons, 77% of the banks in the sample have a total multiplication factor greater than the minimum of 3, which includes the addend resulting from the number of over-shootings (Table 1 in Article 366 of the CRR) and any supervisory extra charge(s). The average total multiplication factor in this sample is equal to 3.5 , with a maximum of 5.02. As a result, quite a number of banks either have to correct for excessive over-shootings or are subject to supervisory measures. In addition, some banks have been assigned other kinds of added penalties that encompass risk 'not in VaR' and additional charges for IRC and APR. This was apparent from the additional and related information provided by some CAs about their supervised banks, and from discussions with some banks during the interviews.
151. These responses suggest that the observed variation may be due to a number of different drivers. The EBA chooses to present the analysis using the following broad headings:

- supervisory actions;
- modelling differences; and
- other drivers of variation.

5.2.3 Supervisory actions

152. Supervisory actions can take different forms and are therefore difficult to capture fully in the analysis. However, the effects of some types of supervisory charges can be approximated. The effect of a higher VaR or sVaR multiplier imposed by a CA because of model weaknesses, for example, can be studied using the following proxy:

$$
\text { Capital proxy }=m_{v a R} * V a R+m_{s V a R} * s V a R
$$

where $m_{v a R}$ and $m_{S V a R}$ are the total regulatory multipliers given by 3 plus any add-on resulting from excessive backtesting exceptions and other prudential extra charges imposed by the regulator (where appropriate).
153. Including the multipliers in the analysis did not significantly change the results in terms of variability across the sample; that is, the positioning across the sample changed, but, on average, the extent of the dispersion did not.
154. Other supervisory measures, such as capital add-ons, cannot be easily captured. They are normally calculated at an aggregate level on the basis of the banks' actual portfolios and, therefore, cannot readily be computed for the hypothetical portfolios used for benchmarking. Moreover, it tends to be the case that these add-ons are intended to capture difficulties in modelling risks associated with more exotic trades not represented well in the HPE.

5.2.4 Modelling differences

155. As recalled in Chapter 4, the CRR permits banks to tailor their VaR models to their specific requirements by making different modelling choices. To test the impact of different modelling choices in a controlled manner, four portfolios were selected based on low IQD. Obviously, the average sample size in this analysis is limited.
156. The portfolios - portfolios 10, 11, 31 and 39 - cover the main asset classes (i.e. EQ, IR, FX and CS) and were chosen due to the low variability of the submissions received for them. Six subsets of banks were defined within (and hence controlling for) the sample of banks using historical simulation, distinguishing the following modelling choices:

- 1-day (25 banks) scaled versus 10-day (13 banks) overlapping returns ${ }^{18}$;
- the length of the historical lookback period (1 year versus >1 year) ${ }^{19}$; and
- keeping constant the 1-day and the unweighted modelling choices, and varying the length of the lookback period (1 year versus >1 year). ${ }^{20}$

157. As shown in Table 6 and Table 7, there seems to be evidence that the modelling choices matter in terms of dispersion and the conservativeness of the VaR. For instance, for the EQ portfolio the 10-day calibration and 'more than 1 year' calibration produce less dispersed and more conservative results.
158. For the IR portfolio the 1-day and 1-year calibrations produce less dispersed results, but the 10-day and 1-year calibrations produce more conservative results.

[^10]159. Secularly in IR, for the FX and the CS portfolios the 10-day calibration and 'more than 1 year' calibration produce less dispersed results, but in terms of conservativeness the 1-day calibration and 'more than 1 year' calibration produce more conservative results.
160. Columns 5 and 6 of Table 6 and Table 7 illustrate the effect of increasing the lookback period (1-year compared to 'more than 1 year') when we keep the other factors (1-day \& unweighted shocks) the same. We see the 'more than 1 year' calibration tending to produce less dispersed results and the least conservative results for the EQ, FX and CS portfolios.
161. These results cannot be directly matched to the previous year's results because of the difference in the instruments selected. It is also clear that these results depend on the portfolios' selection for this analysis. Therefore, based solely on this analysis, it is difficult to support the idea that one specific model choice will lead to consistently more conservative and less dispersed risk measures.

Table 6: Coefficient of variation for regulatory VaR (controlling for HS) by modelling choice (\%)
Coefficient of Variation for regulatory VaR (controlling for HS)

Port.	1-day	10-day	1 y	>1y	1d, 1y, unw	1d, >1y, unw
EQ 10	8.9\%	2.8\%	8.6\%	6.2\%	10.9\%	7.9\%
IR 11	5.7\%	6.0\%	4.0\%	6.2\%	3.9\%	5.2\%
FX 31	8.8\%	8.5\%	12.3\%	7.9\%	11.9\%	6.6\%
CS 39	19.3\%	10.9\%	13.7\%	13.1\%	17.2\%	13.1\%
mean	10.7\%!	7.0\%	9.7\%	8.3\%	11.0\%	8.2\%

Table 7: Average regulatory VaR by modelling choice

	Average VaR subsamples					
	1-day	10-day	$1 y$	$>1 y$	1d, 1y, unw	1d, >1y, unw
EQ 10	285,958	286,422	282,319	289,636	280,451	293,274
IR 11	70,531	73,395	73,697	69,747	73,296	68,275
FX 31	299,411	274,009	289,438	293,663	296,647	303,361
CS 39	10,482	9,859	9,181	11,155	9,002	11,878

5.2.5 Other drivers of variation

162. In addition to the drivers of variation discussed in the preceding two subsections, there may be other drivers of variation.

In subsection 5.2.4 'Modelling differences', for instance, only results obtained with HS VaR were discussed, although the methodological aspects considered are expected to be important for other model types (e.g. MC simulation) as well.
164. Another driver of variation is the risks not captured in a model. Due to the simplification of the exercise compared to past exercises (2016-2018), the majority of the most exotic instruments were deleted, so most of the possible risk factors not in the models are no longer present in the exercise. Moreover, banks that are not able to model specific trades are allowed by the Benchmarking RTS not to submit the risk measure. This is shown, for example, in instrument 23 (IR 'Cap and Floor’ on 10-year note), where only 19 observations (across 54 banks) are available. Nonetheless, for this non-vanilla product the IQD is only 18% for the VaR, which means that the submitting banks presented some consistent risk measures. As a result, it is likely that few risks not in VaR were present.
165. The use of proxies probably leads to spurious variability in some of the hypothetical portfolios characterised by less liquid risk factors, for example some credit spreads. This consideration also applies to the sVaR.
166. As in the previous exercise, the EBA also presents analysis of aspects not considered in the past (2016-2018). Four additional drivers of variation will therefore be tested in the following areas: (a) size of the bank, (b) business model, (c) level of approval of model (e.g. general interest risk versus general and specific interest risk approval, or general equity risk versus general and specific equity risk approval) and (d) time window selected for the calibration of the stressed VaR. Compared to the previous exercise (2019), the EBA also tested different definitions of size and business models.
a. Size of the bank
167. The size of the bank could have some impact on the internal model. Larger banks are expected to invest more in internal modelling, and this could have an impact on the quality of the model and the results submitted. The same can be said of banks that invest more in market activities in terms of their whole bank activity. The composition of the bank's trading portfolio could also have some influence on the design and performance of the internal model. Nonetheless, size is not a uniquely definable variable.
168. For the scope of the analysis, the size of the banks was selected based on banks' common reporting results concerning the RWA for market risk. The market risk RWA was preferred in selecting the size because a bigger bank in terms of total RWA can have a smaller market risk trading book in relative terms. The market risk RWA variable was therefore preferred. It should be noted that market risk RWA also incorporates the standardised measure, but classifying the bank by the internal model market risk RWA did not change the composition of the sample substantially.
169. The banks were divided into three subsamples: large (above the 75th quantile), medium (between the 75th and 25th quantiles) and small (lower than the 25th quantile). Detailed VaR tables are presented in the annex (see Table 27, Table 28 and Table 29).
170. Table 8 summarises the effect of the size of the bank. For EQ, IR and commodity it seems that dispersion is somewhat proportional to the size of the banks. FX dispersion seems to be less affected by the size, while CS exhibits some proportionality between size and dispersion, even if medium and large banks are generally aligned. This implies that the banks' size does matter and that variability in size increases the dispersion of the general results submitted.
171. Further analysis of this aspect can be carried out in terms of the factors selected to define the size. If we run the same analysis using the size of the trading book ${ }^{21}$ instead of the size of the bank (defined by RWA for market risk), we can see that dispersion varies again across different asset class and different sizes of banks. The results are reported in Table 30, Table 31 and Table 32. Looking solely at the trading book size, we obtain different results. The average IQD grows with the size of the trading book. The average IQD is 11% for small TB banks, 14% for medium TB and 15\% for large TB banks.
172. The results concerning the impact of size on variability are mixed, and analysis of the impact of size on the risk measure results merits further investigation in future exercises.

Table 8: Asset class comparison for VaR in terms of banks' size

	VaR - Avg. Interquartile Range			
	All Banks	Small Banks	Medium Banks	Large Banks
Equity	18%	15%	17%	10%
Interest Rate	13%	15%	12%	10%
FX	12%	10%	11%	8%
Commodities	20%	21%	14%	13%
Credit Spread	23%	16%	21%	20%
CTP	40%	0%	18%	19%
All-in	13%	7%	10%	10%

b. Business model

173. The business model of the banks in the sample was selected based on a previous analysis run by the EBA (EBA - LCR Report ${ }^{22}$). In the sample of 54 banks, 27 were classified as crossborder universal banks, which is by far the most numerous business model in the sample. The

[^11]remaining banks were either not classified or had different business models (e.g. local universal banks), but they were too few to use as a subsample for this kind of analysis. So the cross-border universal bank business model was selected.
174. Specific VaR results for banks classified as cross-border universal banks are shown in Table 30 of the annex. Table 9 summarises the impact of the business model on different asset classes. It is clear that the business model selected is so predominant in the sample that it does not allow for proper discrimination among the whole sample; therefore, the dispersion of the banks belonging to the same business model is very close to the dispersion of the whole sample for the banks. Judging from the results, there is some weak evidence that the business model has some effect in increasing the dispersion of the VaR submission.
175. Further analysis of the business model can be carried out in terms of factors selected to define the business model. If we run the analysis based on the amount of 'Level 3 assets and liabilities' in relation to the size of the trading book ${ }^{23}$ (FINREP data), the results are reported in Table 34, Table 35 and Table 36. The average IQD is 11% for the low level of Level 3 A\&L banks, 15% for the medium level and 11\% for the high level of Level 3 A\&L banks. Therefore, it seems that a more exotic composition of the bank's trading book does not affect the variability of the results. Further analysis of this aspect is expected to be carried out in the future exercise.

Table 9: Asset class comparison for VaR within the same business model (cross-border universal bank)

	VaR - Avg. Interquartile Range	
	All Banks	Cross-border Universal bank
Equity	18%	14%
Interest Rate	13%	12%
FX	12%	11%
Commodities	20%	18%
Credit Spread	23%	20%
CTP	40%	19%
All-in	13%	11%

c. Level of approval
176. Banks can have different levels of approval for equity and interest rate risks. To be more specific, banks can apply to obtain approval for the general equity or interest rate risk or they can apply for approval of the specific equity or interest rate risk as well. See also the discussion in Section 4.2 on this point. In general, having approval for both the general and the specific parts of the equity and interest rate risks allows banks to fully model the instruments in the

[^12]equity and credit spread sections of the exercise. Nonetheless, banks with only general approval are required to report these instruments as well, but this has been known to generate additional dispersion in the risk measures submitted. For this reason, in this exercise the EBA filtered all the results submitted and produced IQD statistics for the banks belonging to the sample of banks with different levels of approval.
177. Among the banks that submitted results for interest rate risk, 30 banks in the report have general and specific approval (see Table 31) and 17 banks have only general approval (see Table 32). Among the banks that submitted results for equity asset risk, 29 banks in the report have general and specific approval (see Table 33) and 11 banks have only general approval (see Table 34).
178. Table 10 summarises the result of the analysis when the filter for the level of approval is applied. It is clear that the presence of banks with different levels of approval tends to slightly bias the benchmarking results.
179. Looking at Table 10 we see that the EQ asset class IQD is smaller when considering only the subsample of firms with the full level of approval with respect to the full sample. The CS asset class also decreases slightly since almost no banks without specific IR approval submitted any CS results. Finally, for the IR asset class splitting the sample between banks with general and specific approval and banks with only general approval produces some marginal changes in the benchmark for this asset class, confirming that the submissions from banks with partial approval tends to increase the IQD of the submissions.

Table 10: Asset class comparison for VaR in terms of level of approval

	VaR - Avg. Interquartile Range			
	All Banks	IR Gen + Specific	IR Gen only	Eq Gen + Specific
Equity	18%			15%
Interest Rate	13%	10%	17%	
Credit Spread	23%	21%		

d. Common stress period considered

180. The stress window applied by the participating banks has always been understood as one of the main sources of the greater dispersion of the sVaR compared to the VaR, but this hypothesis was tested only from the 2019 exercise onwards due to a lack of information regarding the time window applied by the banks to calibrate the sVaR. This information was collected for the 2020 exercise as well and applied to test the impact of the stress time window selected to calibrate the sVaR.
181. Generally speaking, in their time window for the sVaR the banks select periods that include either 2008-2009 or 2011 in order to calibrate their sVaR, with a preference for 2008-2009. Because of the higher number of banks selecting 2008-2009, the EBA filtered the sample of the banks that applied a 2008-2009 time window for sVaR calibration, obtaining a subsample of 30 banks. The benchmark and the related statistics for this subsample of banks are available in Table 35 in the annex, and they are easily comparable with the full sample sVaR statistics in Table 22.
182. Table 11 summarises this stress period filtering analysis. It seems clear that the different time window selected for the bank actually has a significant impact on sVaR statistics. This means that the subsample with the same stress period generally - with the exception of the FX asset class - exhibits smaller dispersion results for sVaR than the whole sample.

Table 11: Asset class comparison for sVaR in terms of time window applied

	SVaR - Avg. Interquartile	
	All Banks	Stressed Period
Equity	27%	20%
Interest Rate	31%	20%
FX	19%	18%
Commodities	17%	16%
Credit Spread	34%	26%
CTP	31%	13%
All-in	15%	10%

5.2.6 Portfolio comparison

183. Selective comparison of VaR results across portfolios can be informative in instances where the riskiness of those portfolios may be ranked in a model-independent way. For example, all else being equal, it is expected that a more diversified and hedged portfolio would lead to a lower VaR than a more concentrated and unhedged portfolio.
184. This hypothesis can be tested with several portfolios in the 2020 exercises. Use of the following portfolios is suggested:

- portfolio 16 , which is composed of instruments 24 (long 5 million German bond - 10 years) and 25 (short 2 million German bond - 5 years);
- portfolio 17, which is composed of instruments 24 (long 5 million German bond - 10 years), 25 (short 2 million German bond - 5 years) and 26 (long 5 million German bond -10 years), so it is equal to portfolio 16 plus instrument 26.

185. Both of these portfolios comprise sovereign bond instruments, yet portfolio 16 is concentrated on only one issuer and is partially hedged (long and short positions). Portfolio 17 adds a second issuer to this portfolio without any hedge. Against this backdrop and in view of the specific portfolio definitions, we would expect the following result:

$$
200 \% \times \operatorname{VaR}_{\text {Portfolio } 16}<V a R_{\text {Portfolio } 17}
$$

186. Table 12 reports when this hypothesis holds true.

Table 12: Portfolio comparison for VaR, sVaR and IRC

	$\operatorname{VaR}(P 17)>\operatorname{VaR}(P 16)$	$S \operatorname{VaR}(P 17)>S \operatorname{VaR}(P 16)$	$I R C(P 17)>I R C(P 16)$
Num of banks	$\mathbf{3 9}$ out of $\mathbf{4 0}$	$\mathbf{3 9}$ out of $\mathbf{4 0}$	$\mathbf{2 9}$ out of $\mathbf{3 0}$

	$\operatorname{VaR}(P 17)>1.5^{*} \operatorname{VaR}(P 16)$	$S V a R(P 17)>1.5^{*} s \operatorname{VaR}(P 16)$	$I R C(P 17)>1.5^{*} I R C(P 16)$
Num of banks	$\mathbf{3 6}$ out of $\mathbf{4 0}$	$\mathbf{3 8}$ out of $\mathbf{4 0}$	$\mathbf{2 9}$ out of $\mathbf{3 0}$

	$\operatorname{VaR}(P 17)>1.8^{*} \operatorname{VaR}(P 16)$	$S V a R(P 17)>1.8^{*} s \operatorname{VaR}(P 16)$	$I R C(P 17)>1.8^{*} I R C(P 16)$
Num of banks	$\mathbf{3 3}$ out of $\mathbf{4 0}$	$\mathbf{3 2}$ out of $\mathbf{4 0}$	$\mathbf{2 9}$ out of $\mathbf{3 0}$

	$\operatorname{VaR}(P 17)>2 * \operatorname{VaR}(P 16)$	$S \operatorname{VaR}(P 17)>2 * S \operatorname{VaR}(P 16)$	$I R C(P 17)>2 * I R C(P 16)$
Num of banks	$\mathbf{3 2}$ out of $\mathbf{4 0}$	$\mathbf{2 3}$ out of $\mathbf{4 0}$	$\mathbf{2 9}$ out of $\mathbf{3 0}$

187. The comparison between the two portfolios with respect to regulatory VaR shows that only 8 out of 40 banks do not meet the initial expectation. The same comparison based on sVaR yields 17 banks that are not in line with this expectation. With regard to the IRC model, one bank does not meet the a priori expectation.

5.3 Analysis of IRC

188. Banks with an approved IRC model constitute a subsample of those with an approved VaR model; only banks using internal models for specific risk of debt instruments are permitted to use IRC models (Article 372 of the CRR).
189. The full set of submissions for IRC results for each trade, after the data-cleaning process has been run as previously described, is reported in Table 13.
190. In the context of the HP exercise, only a subset of banks made submissions for IRC, and a number of those banks submitted very low figures. This suggests that important risk factors (in the context of the HPE) have not been modelled. While the submission of low figures may be linked to risk factors not modelled, this should not be taken to mean that banks with higher IRC figures included all risk factors from a given portfolio in their model.
191. The number of submissions is limited for some of the all-in portfolios. Statistical inferences for these portfolios are thus not appropriate. A prerequisite for consideration of banks' submissions for the all-in portfolios is that a bank needs to be able to model all the corresponding underlying portfolios.
192. As in the case of VaR, a selective comparison of IRC results across portfolios can be informative in instances where the riskiness of those portfolios may be ranked in a modelindependent way. As shown in subsection 5.2.6, the expected diversification relationship holds true for all but one of the banks that submitted such results.
193. It is recommended that CAs assess the extent to which these missing risk factors are important in the context of banks' overall risk, and whether or not they need to be added to the model.
194. CAs should devote particular attention to portfolios $46,49,50$ and 51 . IRC shows a higher level of dispersion (above 70%) for portfolios $46,49,50$ and 51 than the dispersion observed in other credit spread portfolios, especially the simplest ones.
195. As is the case for VaR and sVaR, banks can choose from a range of permitted modelling approaches for IRC. For example, banks need to choose:

- a source of credit risk estimates such as PD and loss given default (LGD);
- the number of systemic factors used to model the co-movement among obligors in their portfolios;
- the size and granularity of credit spread shocks to apply to positions with an obligor following a rating transition; and
- the liquidity horizons to assign to positions with a particular obligor.

196. The responses to the qualitative questionnaire relating to the IRC methodological aspects suggest that the use of market LGD predominates among respondents (Figure 12), with 17 out
of 34 banks using market convention as the source of LGD. A minority of banks - 6 out of $34-$ use their own IRB models as the source of LGD. The rest - 11 banks - use various other sources to obtain the LGD.
197. The PDs are provided by rating agencies in 56% of cases, by the IRB in 28%, by other sources in 9% and in only 3% by market-implied PD. The transition matrices are mostly taken from rating agencies (23 respondents out of 31), while just two banks use their IRB and one uses 'market implied transition matrices'. The rest use various other sources.

Figure 12: Qualitative data: source of LGD for IRC modelling

198. Moreover, a majority of respondents stated that they use more than two systemic modelling factors at the overall IRC model level (Figure 13).
199. The liquidity horizon applied at the portfolio level for the IRC model is predominantly between nine and 12 months (22 respondents out of 32).

Figure 13: Qualitative data - number of modelling factors for IRC

200. Hence, in the context of IRC the modelling practices across the sample of banks participating in the benchmarking exercise seem to be consistent.

Table 13: IRC statistics and cluster analysis
EU Statistics for IRC

		Main statistics								Percentiles			
	Port. ID	Min	max	Ave.	STDev	STDev_trunc ${ }^{1}$	MAD (median absolute deviation)	$\begin{gathered} \text { Coefficient of } \\ \text { variation } \\ \text { (STDev/Mean) } \end{gathered}$	Num obs. ${ }^{2}$	25th	50th	75th	IQD
	15	35,769	344,836	198,948	92,915	92,915	66,938	47\%	13	149,091	216,282	226,799	21\%
	16	27,779	951,381	226,188	219,328	410,064	75,384	97\%	29	109,612	165,545	229,973	35\%
	17	129,037	4,071,968	2,148,215	1,239,568	1,169,824	1,105,677	58\%	31	811,494	2,309,141	2,992,084	57\%
Interest Rate	18	612,311	6,292,933	3,219,631	1,723,287	1,612,903	1,728,850	54\%	31	1,566,097	3,465,620	5,194,470	54\%
	23	74,840	2,477,710	625,388	571,203	1,106,207	195,488	91\%	30	249,600	537,304	788,744	52\%
	24	64,540	5,554,470	3,039,303	1,715,658	1,649,747	1,475,735	56\%	30	1,211,585	3,081,731	4,464,333	57\%
	26	712,043	7,061,213	3,691,880	1,981,578	1,933,605	1,749,894	54\%	30	1,902,298	3,675,535	5,402,085	48\%
	36	7,935	393,638	119,048	105,974	152,386	51,474	89\%	28	38,929	104,451	138,020	56\%
	37	16,446	89,600	54,043	20,282	20,310	13,245	38\%	28	37,706	51,572	71,639	31\%
	38	775	101,864	47,432	26,981	29,790	18,841	57\%	29	27,212	48,253	64,584	41%
	39	8,630	442,474	169,886	145,493	164,735	72,647	86\%	28	56,454	128,399	294,898	68\%
	40	181	103,481	53,309	27,840	27,596	18,344	52\%	30	35,404	51,027	74,969	36\%
	41	426,429	961,146	694,017	140,756	187,882	96,251	20\%	28	621,191	660,636	802,147	13\%
	42	14,700	309,018	126,931	56,595	238,639	17,749	45\%	28	118,370	137,498	141,725	9\%
	43	351,300	1,031,117	645,880	198,880	229,540	128,489	31\%	28	494,231	637,896	748,032	20\%
Credit Spread	44	482	173,743	80,788	40,610	59,029	26,065	50\%	29	57,932	83,847	105,438	29\%
Creait Spread	45	9	181,858	59,303	48,159	79,621	30,841	81\%	30	25,170	57,437	81,317	53\%
	46	635	185,697	31,791	50,232	100,863	7,777	158\%	32	2,266	11,567	31,692	87\%
	47	14,300	280,988	121,765	77,773	88,723	57,643	64\%	29	50,520	114,122	165,041	53\%
	48	2,299	84,526	26,661	26,414	40,884	7,099	99\%	30	8,815	13,047	37,443	62\%
	49	8,630	467,773	168,366	155,855	174,644	56,304	93\%	28	50,045	120,517	311,621	72\%
	50	266	364,595	114,445	102,922	151,076	75,396	90\%	30	12,373	120,396	221,212	89\%
	51	1,713	440,574	163,920	140,139	171,584	96,332	86\%	27	30,662	159,415	285,262	81%
	52	22,679	848,557	310,515	209,375	324,998	156,633	67\%	26	164,976	335,191	457,920	47\%
	53	57,069	848,293	376,529	225,158	317,745	185,058	60\%	26	180,628	412,481	550,745	51\%
ALl-IN no-CTP ***	57	704,984	7,421,949	3,651,135	2,057,466	1,994,064	1,649,381	56\%	${ }^{21}$	2,022,024	3,690,778	5,288,237	45\%
CS Cumulative **	62	299,193	1,092,695	716,836	192,987	402,216	93,015	27\%	26	638,452	735,835	833,974	13\%

[^13]*For the agregated portfolios (57 to 63) banks that reported at least a mising portfolio IMV among the ones composing the aggregate are not included
in the computation of the benchmarks for that particular aggregate portfolio.
201. Table 13 shows that the average variability of IRC is higher than that observed for VaR. This table presents a summary of the descriptive statistics concerning the IRC values submitted, along with the median, first and third quartiles used to select out-of-range values to be discussed with the banks during the interviews. EBA received on average 29 submissions for IRC in relation to the IR and CS hypothetical trades.
202. In this exercise, the EBA also provided a disaggregated analysis of sources of LGD and numbers of modelling factors. It is possible to split the sample between market convention and non-market convention (IRB and other sources) and the number of modelling factors (1-2 vs. more than 2). In Table 14 below, the average interquartile is reported. The full set of results is also reported in Table 43, Table 44, Table 45 and Table 46.
203. The IQD dispersion of the subsample is very stable for the CS portfolios among different model choices. Non-market convention and 1-2 modelling factors seem to produce the less dispersed results for IR portfolios.

Table 14: Coefficient of variation for regulatory IRC by modelling choice (\%)

	VaR - Avg. Interquartile Range				
	All Banks	Source of LGDss		No. modelling factors	
		Market Convention	Non-market Convention	1 -2 factors	>2 factors
Interest Rate		52%	34%	33%	55%
Credit Spread	50%	47%	46%	45%	46%
All-in	29%	30%	17%	24%	24%

5.4 Analysis of APR

204. In their responses to the qualitative questionnaire relating to the APR methodological aspects, 6 out of 8 respondents stated that they use more than 2 modelling factors at the overall CTP model level.
205. With regard to the source of LGD estimates at the overall CTP model level, most respondents use market LGD, while a minority of banks use the LGD underlying other sources. No banks reported using IRB sources.
206. As in the case of IRC, the rating agencies are the principal source for PD estimates and transition matrices; only one bank uses its own IRB model for these data. The liquidity horizon applied at the portfolio level for the CTP model is predominantly between nine and 12 months.
207. It should be highlighted that all of these options are, in principle, acceptable under the current regulatory framework and that it is up to banks and CAs to agree on the most appropriate ones to be applied by each bank during the validation process, with particular reference to the banks' individual trading portfolios and trading activities. Thus, given the wide
range of approaches that institutions using an internal model can choose to implement, some degree of variability among the resulting capital requirements is expected.
208. At the same time, these differences in implementation are clearly not the only factors behind variability. There are other modelling choices that are not explicitly envisaged in the regulations such as differences in simulation engines and data sources, differences in the methods used to compute risk factors when data are not directly observable (e.g. all indirect parameters such as volatilities and correlations), the absence of some of the risk factors considered and differences in approximations when repricing positions.
209. The majority of banks with an approved APR model used a one-factor Gaussian copula model, in which the potential loss is estimated by averaging a number of worst-case scenarios corresponding to a 1-year development in the market along with market parameter simulations (i.e. credit spreads, recovery rates, default correlations, CDS/index basis) and transition matrices for rating migrations.
210. The average variability of the APR charge is 45% when computed by averaging the IQD of each CTP. This variability is due to the assumptions and modelling choices made by banks, but it is difficult to arrive at any takeaway because of the very small number of contributions (Table 15). This is also the reason why no further meaningful analysis, for example with respect to VaR, is possible. Table 15 should therefore be used for reference only, since the sample size cannot be considered statistically robust.

Table 15: APR statistics and cluster analysis

5.5 P\&L analysis

211. The P\&L analysis is complementary to the outcome of the assessment of variability based on VaR modelling. For each individual portfolio, the P\&L vectors provided by banks using HS were compared, and a benchmark analysis is provided in the annex (see Table 23).
212. A graphic exemplification of low and high IQD portfolios is represented below in Figure 14 and Figure 15. Even though the P\&L vectors available are much longer, only 3 months (1 November 2019 to 1 February 2020) are reported to simplify the representation. Additional
examples of low and high IQD portfolios can be found in the annex in Figure 24 and Figure 25. It is clear that P\&L vector series that perform better tend to be closer to the benchmark. On the other hand the low absolute value of the P\&L, as per the risk measures, tends to provide misleading information if we consider the IQD figures alone.

Figure 14: P\&L chart example of low IQD

Portfolio 10: 3 months daily P\&L
(orange: daily median)

Figure 15: P\&L chart example of high IQD

213. Another useful check for the P\&L results submitted was a comparison of the ratio between the P\&L VaR computed by the EBA (see Section 4.2 and Table 26) and the regulatory VaR submitted by the participating banks. A significant deviation of this ratio from 1 indicates an incoherent submission from the bank (see Table 26 in the annex). Moreover, it allows the tightness or the width of the realised P\&L distribution for each bank to be checked at each hypothetical trade position. This can be done by referring to the standard deviation of the P\&L series.
214. Another metric computed by the EBA from the P\&L series provided by HS banks is the empirical ES (see Table 24 in the annex). The empirical ES results have approximately the same level of dispersion as the P\&L VaR (see Table 4 in Section 5.1).

5.6 Diversification benefit

215. An additional metric considered as part of the analysis was the diversification benefit observed for VaR, sVaR and IRC in the aggregated portfolios.
216. The diversification benefit of a given metric (e.g. VaR) is computed as the absolute benefit, i.e. the difference between the sum of the single results for each individual position and the result for the aggregated portfolio, divided by the sum of the single results from each individual portfolio. Table 16 summarises the results of the analysis.
217. As expected, there is evidence that larger aggregated portfolios exhibited greater diversification benefits than smaller ones. The diversification benefit for all-in portfolio 57 (allin no-CTP portfolio), for instance, clearly exceeds the benefit for the other risk types, whose allin portfolios are based on fewer individual instruments. With regard to the dispersion shown by the diversification benefits, it is possible to observe a significantly higher IQD for some portfolios than for others, and - in some cases - a quite comparable dispersion across VaR, sVaR and IRC (e.g. interest rate and commodity risk categories).

Table 16: Diversification benefit statistics
Diversification benefit statistics
Diversification benefit =(Sum of single portfolios VaR - Aggregated Port. VaR)/Sum of single portfolios VaR
VaR

		Other statistics			Percentiles			
	Port.	Ave.	STDev	Num obs. ${ }^{3}$	25th	50th	75th	Interquartile dispersion
ALL-IN no-CTP	57	81\%	2\%	12	80\%	82\%	83\%	1\%
Equity Cumulative	58	77\%	5\%	28	74\%	76\%	79\%	3\%
IR Cumulative	59	46\%	7\%	38	41\%	46\%	51\%	12\%
FX Cumulative	60	44\%	9\%	35	41\%	45\%	49\%	8\%
Commodity Cumulative	61	3%	2\%	17	2\%	3%	5\%	46\%
Credit spread Cumulative	62	33\%	10\%	26	28\%	33\%	41\%	18\%

sVaR

		Other statistics			Percentiles			
	Port.	Ave.	STDev	Num obs. ${ }^{3}$	25th	50th	75th	Interquartile dispersion
ALL-IN no-CTP	57	75\%	5\%	12	69\%	75\%	78\%	7\%
Equity Cumulative	58	73\%	8\%	28	68\%	73\%	77\%	6\%
IR Cumulative	59	48\%	14\%	38	38\%	52\%	58\%	21\%
FX Cumulative	60	34\%	11\%	35	29\%	35\%	37\%	12\%
Commodity Cumulative	61	2\%	1\%	11	1\%	3\%	3\%	48\%
Credit spread Cumulative	62	9\%	4\%	19	5\%	8\%	11\%	40\%

IRC

		Other statistics			Percentiles			
	Port.	Ave.	STDev	Num obs. ${ }^{3}$	25th	50th	75th	Interquartile dispersion
Credit spread (36 to 53)**	27	37\%	18\%	28	30\%	44\%	50\%	24\%

5.7 Dispersion in capital outcome

218. As a final means of comparison, for each individual position a variable equating to the sum of the regulatory VaR and sVaR was computed. This variable was used in two ways: using the banks' total multiplication factor, and using only the regulatory multiplication factor, i.e. ignoring the banks' individual addend(s) set by the CAs. The results were averaged across a given risk type, thus arriving at a proxy for the implied capital outcome.
219. In addition, the exercise also attempted to isolate the effect of the time windows selected as the stress period. Therefore the same statistics were reported for banks applying the 2008-9 stress period.

Table 17: Interquartile dispersion for capital proxy

Interquartile dispersion for capital proxy

	Capital proxy (banks own mult)	Capital proxy (fixed mult, $=3$)	Capital proxy Stressed period (fixed mult, $=3$)
Equity	23%	20%	18%
IR	20%	21%	17%
FX	16%	14%	14%
Commodity	19%	15%	13%
Credit spreads	28%	28%	21%
CTP	31%	30%	12%

220. Table 17 suggests that variability is slightly exacerbated by regulatory add-ons. In any case, the ranges of capital value dispersion remain broadly aligned whether or not the banks' actual multiplication factors are used. Moreover, filtering for banks with the same stress window seems to have a further impact in decreasing the variability. Nonetheless we need to take into consideration that the sample of banks decreases in number when analysing the subsample of banks with the same stress period, which - other things being equal - tends to increase the IQD.

5.8 Present value

221. The 2020 exercise sees the introduction of the PV as a statistic to be provided by the banks. The full set of statistics is provided in Table 42.
222. The average IQD of the PV among the single portfolios is 4\%. This low IQD would be even lower, at 2\%, if 3 portfolios with a relatively high IQD (Portfolios 24, 32 and 33) were excluded. By asset class the IQD is distributed as follows: EQ (1\%), IR (3\%), FX (4\%) CO (38\%) and CS (1\%). The high IQD of the CO asset class is driven by Portfolio 33 (IQD 100\%), where the low PV of the portfolio and the $75^{\text {th }}$ quantile being close to zero naturally produce a high IQD measure despite the absolute difference in the PV being very limited.
223. PV measures are useful to CAs to verify the RM values. The ratio of RM over PV helps the CAs to quickly verify if the RM outlier comes from a simple mispricing of the portfolio or if it is indeed a true outlier with respect to the RM benchmark. Further analysis of these aspects is expected to be carried on in future exercises.

6. Competent authorities' assessment

224. For each participating institution, the CAs provided individual assessments of any potential underestimation of the capital requirement as required by Article 78(4) of the CRD and Articles 9 and 10 of the draft RTS on supervisory benchmarking. This chapter highlights some key information derived from these assessments.
225. The EBA designed a questionnaire regarding this assessment, which asked CAs to provide detailed information concerning the level of priority, based on both judgemental and qualitative/quantitative examination results, the overall assessment concerning the MR capital requirements of the internal models and, finally, the CAs' ongoing monitoring activities.
226. A total of 47 questionnaires from 14 jurisdictions, provided by the CAs, have been considered in this assessment of the MR benchmarking exercise.
227. Regarding the level of priority of the assessments, four banks (8.5\%) are reported to be high priority for intervention by CAs. CAs gave high priority to those banks that were outliers in the analysis, are particularly significant for the jurisdiction, have a history of incorrect submission or were identified as potential candidates for the interview process. The criteria for selecting banks as high priority were substantially based on firms' results in terms of the capital requirement proxy (below the 25th percentile or above the 75 th percentile) alongside other aspects such as the relative importance of the bank in the jurisdiction and recent changes in the methodology for computing the risk measures.
228. Figure 16 reports the CAs' own overall assessments of the levels of own funds requirements. When it comes to benchmark deviations, justified or not, 32 banks were reported by CAs as under- or overestimating MR own funds requirements, of which 29 provided justifications for this. Obviously, 'not justified' implies that further and targeted CA investigation is required. Finally, 15 banks had consistent results (i.e. no benchmark deviations).
229. CAs' assessments acknowledge three cases out of 47 of unjustified under- or overestimation of internal model market capital requirements that require further in-depth analysis. Obviously, CAs - and the joint supervisory teams where applicable - pay great attention to the potential underestimation cases, both across the portfolio and across the risk categories.

Figure 16: CAs' own assessments of the levels of MR own funds requirements 2019

230. The main factors and reasons that may explain possible underestimations are as follows: benchmarking portfolios that do not represent the actual composition of the real trading portfolios of the institutions (8/32); missing risk factors not incorporated in the models (9/32); differences in calibration or data used in modelling estimation and/or simulation (10/32); proxies applied (10/32); and differences attributable to the methodology used (13/32). These explanations, and very often a combination of these explanations, were offered by a large majority of the applicable respondents.
231. Two banks were identified as possibly underestimating, without justification, during the banks' internal assessment process run by the CAs. Both cases were classified ad 'low priority' by the CA, and were not considered as extreme outliers by the EBA. CAs are currently undertaking some monitoring activities (both ongoing and on-site) of the internal models to check all the issues related to these banks.
232. To be more specific, for one bank, the CAs assessed that the underestimation, despite not being fully justified, was focused on a few specific portfolios. In addition, the CAs had additional examinations in place that provided further reassurance of the quality of the internal model results for the bank.
233. For the second subject, the inability to fully justify the underestimation was only partial. In this specific case, the CA nonetheless received a fairly robust explanation of the reason linked to the underestimation. Moreover, there are already substantial model changes due to be applied before the end of this year as requested by the CA. This should improve the quality of the bank's risk measures.
234. The bank identified as possibly overestimating, without justification, is also classified as 'low priority' by the CA. Differences in calibration or data used in modelling estimation and/or
simulation were also identified by the CA, which was nonetheless unable to fully explain and investigate the misalignment.
235. Overall, CAs planned some action in respect of 14 banks, such as:
a. reviewing the banks' internal VaR and IRC models;
b. supervisory extra charge;
c. stringent conditions on any extension of the internal model approach;
d. further internal model investigation at peer level.
236. Currently, six banks have a due date for making improvements to their MR internal models as already requested by CAs.

7. Conclusion

237. This report has presented an analysis of the observed variability across results provided by EU banks that have been granted permission to adopt internal models for MR own funds requirements.
238. It must be recalled and emphasised that, as the quantitative analysis is based on hypothetical portfolios, this report focuses solely on potential variations and not on actual variations. The analysis shows the extent of the variability in these hypothetical portfolios, but that cannot automatically lead to conclusions regarding real under- or overestimations for the MR capital charge.
239. However, the analysis might help in determining possible supervisory activities to address uniformity and harmonisation across the Member States, and in promoting in-depth future cross investigations of this matter.
240. The objective of the benchmarking exercise was not to reach a final judgement on the key drivers of variation and the calculation of the implied capital charges, but to provide supervisors with insights into how to increase comparability and reduce the variability between banks that is attributable to non-risk-driven behaviours.
241. In particular, the report provides inputs for CAs on areas that may require their further investigation, such as IMV variability for some credit spread products. Supervisors should pay attention to the materiality of risk factors not in VaR and, in particular, not encompassed in the IRC models.
242. Moreover, the conclusions reached in regular supervisory model monitoring activities will take into account the outcome of the supervisory benchmarking exercises to achieve greater alignment between CAs' targeted internal model reviews and the EU's benchmarking analysis.
243. Overall, this exercise exhibits a reduced IMV variability. Some errors in data submission are still present, even though this was the second submission with these portfolios. The variability of risk measures is lower than in the previous exercise, but the positive effect of the different methodology to exclude outliers among the risk measures has to be included in this observation. The variability of the VaR aggregated portfolios is limited: the 'all-in portfolio' IQD is 7\%. Aggregated by asset class, the portfolio IQD of the others is 13% on average, and never above 20%, except for CTP. Further improvement in variability should be achieved in future exercises thanks to the clarification provided in the 2021 ITS. The new analysis carried out in the 2019 exercise - the considerations of level of approval, size of the banks, business model adopted and stress period - is interesting and was repeated and extended in the 2020 exercise. No interviews were run in this exercise because CAs privileged different methods to monitor the deviation from the benchmark of the banks flagged as outliers.
244. Finally, this report provides a framework that can be considered useful for the purpose of future benchmarking exercises under Article 78 of the CRD. Therefore, the type of analysis conducted (i.e. the statistical tools provided to CAs, the graphs and tables created, the methodology defined, etc.) offers a clear direction for future investigations of and activities relating to these issues.

8. Annex

Table 18: Banks participating in the 2019 EBA MR benchmarking exercise

Country	Bank name
AT	Erste Group Bank AG
AT	Raiffeisen Bank International AG
BE	Belfius Bank
BE	Dexia
BE	KBC Groep
DE	COMMERZBANK Aktiengesellschaft
DE	DekaBank Deutsche Girozentrale
DE	Deutsche Bank AG
DE	DZ BANK AG Deutsche Zentral-Genossenschaftsbank, Frankfurt am Main
DE	Landesbank Baden-Württemberg
DE	Landesbank Hessen-Thüringen Girozentrale
DE	Norddeutsche Landesbank -Girozentrale-
DK	Danske Bank A/S
DK	Nykredit Realkredit A/S
ES	Banco Bilbao Vizcaya Argentaria, S.A.
ES	Banco Santander, S.A.
ES	BFA Tenedora de Acciones, S.A.
ES	CaixaBank, S.A.
FI	Nordea Bank Abp
FR	BNP Paribas
FR	Groupe BPCE
FR	Groupe Crédit Agricole
FR	HSBC France
FR	Société générale S.A.
GB	Barclays Plc
GB	Citigroup Global Markets Europe Limited
GB	Credit Suisse Investments (UK)
GB	Goldman Sachs Group UK Limited
GB	HSBC Holdings Plc
GB	ICBC Standard Bank Plc (was Standard Bank Plc)
GB	J P Morgan Capital Holdings Limited
GB	Lloyds Banking Group Plc
GB	Merrill Lynch UK Holdings Ltd
GB	Mitsubishi UFJ Securities International PLC
GB	Morgan Stanley International Ltd
GB	Nomura Europe Holdings PLC
GB	Standard Chartered Plc
GB	The Royal Bank of Scotland Group Public Limited Company
GR	Alpha Bank, S.A.
GR	Eurobank Ergasias, S.A.
GR	National Bank of Greece, S.A.
IE	Bank of America Merrill Lynch International Designated Activity Company
IE	Barclays Bank Ireland plc
IT	Banco BPM SpA
IT	Intesa Sanpaolo S.p.A.
IT	UniCredit S.p.A.
NL	ABN AMRO Bank N.V.
NL	Coöperatieve Rabobank U.A.
NL	ING Groep N.V.
NL	NIBC Holding N.V.
NL	RBS Holdings N.V.
PT	Banco Comercial Português, SA
SE	Skandinaviska Enskilda Banken - group
SE	Swedbank - group

Country	AT	BE	DE	DK	ES	FI	FR	GB	GR	IE	IT	NL	PT	SE
N.banks	2	3	7	2	4	1	5	14	3	2	3	5	1	2

Instruments

	EQUITY
1	Long EURO STOXX 50 index
2	Long 10000 BAYER (ticker: BAYN GR) shares.
3	Short future BAYER (ticker: BAYN GR) (1 contract = 100 shares).
4	Short future, PEUGEOT PSA
5	Short future, ALLIANZ
6	Short future BARCLAYS
7	Short future DEUTSCHE BANK
8	Short future CRÉDIT AGRICOLE
9	Long call option. Underlying BAYER
10	Short call option. Underlying BAYER
11	Long call option. Underlying PFIZER
12	Long put option. Underlying PFIZER
13	Long call option. Underlying BAYER
14	Short call option. Underlying BAYER
15	Long call option. Underlying AVIVA
16	Long put option. Underlying AVIVA
17	Short future NIKKEI 225
18	Autocallable equity product
	IR
19	5-year IRS EUR - receive fixed rate and pay floating rate
20	Two-year EUR swaption on 5-year interest rate swap
21	5-year IRS USD. Receive fixed rate and pay floating rate
22	2-year IRS GBP. Receive fixed rate and pay floating rate
23	Long position on 'cap and floor' 10-year UBS AG (ticker: UBSG VX) notes
24	Long GERMANY GOVT EUR 5 MLN (ISIN DE0001135085)
25	Short GERMANY GOVT EUR 2 MLN (ISIN DE0001102358))
26	Long ITALY GOVT EUR 5 MLN (ISIN ITO005246134)
27	Long ITALY GOVT EUR 1 MLN (ISIN IT0004953417)
28	Long SPAIN GOVT EUR 5 MLN (ISIN ESO0000124C5)
29	Short FRANCE GOVT EUR 5 MLN (ISIN FR0011317783)
30	Short GERMANY GOVT EUR 10 MLN (ISIN DE0001102390)
31	Long UNITED KINGDOM GOVT GBP 5 MLN (ISIN GB0002404191)
32	Long PORTUGAL GOVT EUR 5 MLN (ISIN PTOTETOE0012)
33	Short UNITED STATES GOVT USD 10 MLN (ISIN US9128283P31)
34	Long BRAZIL GOVT 5 MLN USD (ISIN US105756BT66)
35	Long MEXICO GOVT 5 MLN USD (ISIN US91086QBC15)
36	10-year IRS EURO - receive floating rate and pay fixed rate
37	5-year IRS EURO - receive floating rate and pay fixed rate

FX

6-month USD/EUR forward contract 6-month EUR/GBP forward contract Long 1 MLN USD cash. Long call option. EUR 10 MLN . Long call option. EUR 10 MLN. Short call option. EUR 10 MLN Short call option. EUR 10 MLN. Long put option. EUR 10 MLN. Short put option. EUR 10 MLN 5-year mark to market (MtM) cross-currency EUR/USD swap

COMMODITIES
Long 3,500,000 6-month ATM London Gold Forwards Short 3,500,000 12-month ATM London Gold Forwards contracts
Long 30 contracts of 6-month WTI crude oil call option
Short 30 contracts of 6-month WTI crude oil put option

CREDIT SPREAD

Long (i.e. buy protection) USD 1 MLN CDS on PORTUGAL
Long (i.e. buy protection) USD 1 MLN CDS on ITALY
Short (i.e. sell protection) USD 1 MLN CDS on SPAIN
Long (i.e. buy protection) USD 1 MLN CDS on MEXICO
Long (i.e. buy protection) USD 1 MLN CDS on BRAZIL
Long (i.e. buy protection) USD 1 MLN CDS on UK
Short (i.e. sell protection) EUR 1 MLN CDS on AXA (Ticker CS FP)
Long (i.e. buy protection) EUR 1 MLN CDS on AXA (Ticker CS FP)
Short (i.e. sell protection) EUR 1 MLN CDS on Aviva (Ticker AV LN)
Long (i.e. buy protection) EUR 1 MLN CDS on Aviva (Ticker AV LN)
Short (i.e. sell protection) EUR 1 MLN CDS on Vodafone (Ticker VOD LN)
Short (i.e. sell protection) EUR 1 MLN CDS on ENI SpA (Ticker ENI IM)
Short (i.e. sell protection) USD 1 MLN CDS on Eli Lilly (Ticker LLY US)
Short (i.e. sell protection) EUR 1 MLN CDS on Unilever (Ticker UNA NA)
Long (i.e. buy protection) EUR 1 MLN CDS on Total SA (Ticker FP FP)
Long (i.e. buy protection) EUR 1 MLN CDS on Volkswagen Group (Ticker VOW GR)
Long position on TURKEY govt. notes USD 1 MLN (ISIN US900123CF53)
Long (i.e. buy protection) USD 1 MLN CDS on TURKEY. Effective date as booking date
Long position on AXA notes EUR 1 MLN (ISIN FR0011524248)
Long position on Volkswagen Group notes EUR 1 MLN (ISIN XS1586555861)
Short position Volkswagen Group notes EUR 1 MLN (ISIN XS1586555606)
Long position on Total SA notes EUR 1 MLN (ISIN XS0830194501)

CTP

Short position in spread-hedged super senior tranche of iTraxx Europe index on-the-run series
Long (i.e. buy protection) USD 1 MLN first to default basket swap on \{Brazil, Mexico and Turkey\}

Individual Combination of instruments: Portfolio

1
2
3
4
5
6

1-1000 instruments
3-1000 instruments; 4-1000 instruments; 5-1000 instruments
13-100 instruments; $10-100$ instruments
15-100 instruments; 16-100 instruments
17-1000 instruments
9-500 instruments; 10-500 instruments
18-1 instrument
11-1000 instruments; $12-1000$ instruments
2-1 instruments; 14-100 instruments
6-1000 instruments; 7-1000 instruments; 8-1000 instruments
19-1 instrument
20-1 instrument
21-1 instrument
22-1 instrument
23-1 instrument
24-1 instrument; 25-1 instrument
24-1 instrument; 25-1 instrument; 26-1 instrument
$24-1$ instrument ; 25-1 instrument ; 26-1 instrument ; 27-1 instrument ; 281 instrument; 29-1 instrument; 30-1 instrument
19-1 instrument; 36-1 instrument
19-1 instrument; 37-1 instrument
36-1 instrument; 37-1 instrument
19-1 instrument; 20-1 instrument
31-1 instrument
33-1 instrument; 34-1 instrument; 35-1 instrument
21-1 instrument; 33-1 instrument
26-1 instrument; 27-1 instrument; 28-1 instrument;32-1 instrument
38-1 instrument; 39-1 instrument
40-1 instrument; 41-1 instrument
41-1 instrument; 42-1 instrument; 43-1 instrument
44-1 instrument; 45-1 instrument
46-1 instrument
47-1 instrument
48-1 instrument; 49-1 instrument
50-1 instrument; 51-1 instrument
48-1 instrument; 51-1 instrument
52-1 instrument; 53-1 instrument; 54-1 instrument
55-1 instrument; 56-1 instrument
58-1 instrument; 59-1 instrument
54-1 instrument; 55-1 instrument
60-1 instrument; 61-1 instrument
62-1 instrument ; 63-1 instrument ; 65-1 instrument ; 66-1 instrument ; 671 instrument
68-1 instrument; 69-1 instrument
70-1 instrument; 71-1 instrument; 73-1 instrument

44	71-1 instrument; 72-1 instrument
45	70-1 instrument; 59-1 instrument
46	66-1 instrument; 73-1 instrument
47	64-1 instrument
48	71-1 instrument; 72-1 instrument; 67-1 instrument
49	57-1 instrument; 54-1 instrument
50	53-1 instrument; 27-1 instrument
51	55-5 instruments; 35-1 instrument
52	56-5 instruments; 34-1 instrument
53	55-5 instruments; 35-1 instrument; 56-5 instruments; 34-1 instrument
54	74-1 instrument
55	75-1 instrument
56	75-5 instruments; 68-5 instruments; 34-1 instrument; 35-1 instrument
Aggregated portfolio	Combination of individual portfolios:
57 ALL-IN noCTP	$1,2,6,7,9,11,12,18,21,27,28,30,31,32,33,34,38,41,43$
58 EQUITY Cumulative	1, 2, 6, 7, 9
$59 \text { IR }$ Cumulative	11, 12, 18, 21
60 FX Cumulative	27, 28, 30, 31, 32

For a detailed description of the portfolios, please refer to the EBA website: https://eba.europa.eu/regulation-and-policy/supervisory-benchmarking-exercises/its-package-for-2020-benchmarking-exercise

Please refer also to Commission Implementing Regulation (EU) 2016/2070 of 14 September 2016, laying down ITS in accordance with Article 78(2) of Directive 2013/36/EU, http://data.europa.eu/eli/reg impl/2016/2070/2018-06-07

Table 20: VaR cluster analysis - number of banks by range

2020 VaR cluster analysis: number of banks by range ($X=$ ratio with the median)

Table 21: VaR statistics

EU Statistics for VaR

		Main statistics								Percentiles			
	Port. ID	Min	Max	Ave.	STDev	STDev_trunc ${ }^{1}$	MAD (median absolute deviation)	Coefficient of variation (STDev/Mean)	Num obs. ${ }^{2}$	25th	50th	75th	IQD
Equity	1	2,081,748	3,206,116	2,608,947	341,602	318,014	314,043	13\%	39	2,242,440	2,606,789	2,901,742	13\%
	2	1,909,923	2,845,713	2,340,147	269,993	269,993	242,972	12\%	36	2,102,021	2,316,907	2,592,041	10\%
	3	10,670	28,701	20,005	4,348	4,625	3,163	22\%	35	16,842	19,832	23,213	16\%
	4	143	1,716	778	436	694	293	56\%	34	403	706	1,093	46\%
	5	727,947,916	973,360,882	833,624,332	76,476,535	87,576,932	65,605,088	9\%	34	763,573,830	853,996,540	902,262,743	8%
	6	17,854	46,308	33,762	8,490	8,816	5,194	25\%	36	26,812	35,126	40,554	20\%
	7	3,862	27,986	11,624	4,787	13,949	2,173	41\%	29	9,066	11,039	13,280	19\%
	8	44,948	133,753	93,421	25,718	27,972	20,403	28\%	34	66,744	98,925	115,331	27\%
	9	36,574	89,738	63,447	12,957	15,078	6,372	20\%	35	55,754	61,151	71,503	12\%
	10	158,743	331,241	279,554	29,367	430,168	8,320	11\%	34	268,796	283,265	289,486	4\%
Intersest Rate	11	64,021	78,221	70,590	4,246	4,681	3,626	6\%	46	67,286	70,167	73,717	5\%
	12	27,936	54,016	40,616	7,052	8,676	5,246	17\%	42	34,800	41,382	45,291	13\%
	13	118,767	178,574	150,055	14,830	15,804	11,217	10\%	47	139,357	148,407	162,089	8%
	14	22,285	32,700	27,490	2,327	3,072	1,270	9\%	46	26,122	27,836	28,766	5\%
	15	10,103	31,178	16,070	5,408	8,310	1,529	34\%	19	11,728	15,841	16,770	18\%
	16	90,921	119,751	103,156	6,149	9,157	4,318	6\%	42	98,856	102,776	108,445	5\%
	17	138,867	362,697	242,310	50,044	62,050	17,979	21\%	39	220,496	252,258	264,847	9%
	18	71,227	472,329	289,111	108,927	111,534	63,382	38\%	40	230,004	294,245	358,870	22\%
	19	126,580	167,912	147,262	10,887	11,283	7,883	7\%	47	139,014	147,805	155,139	5\%
	20	3,105	6,996	4,458	1,025	1,551	549	23\%	45	3,605	4,059	5,336	19\%
	21	243,192	323,341	287,613	22,162	23,481	18,812	8\%	47	271,289	281,550	309,019	7\%
	22	35,509	63,601	49,492	6,293	8,446	4,325	13\%	43	45,947	49,057	54,904	9%
	23	141,780	202,388	168,919	17,562	17,711	15,896	10\%	45	152,435	167,115	181,074	9\%
	24	42,451	403,906	199,694	103,402	116,207	74,429	52\%	35	116,765	190,979	267,160	39\%
	25	12,685	109,079	45,932	23,169	39,057	8,027	50\%	46	29,856	40,586	55,976	30\%
	26	166,144	547,837	378,079	95,439	110,112	40,080	25\%	38	341,636	375,364	423,004	11\%
FX	27	388,925	588,161	481,330	52,978	52,870	37,969	11\%	${ }^{43}$	438,613	485,157	517,961	8%
	28	3,899	22,595	11,546	3,249	6,533	1,977	28\%	40	9,779	11,776	13,440	16\%
	29	61,605	148,573	99,881	25,114	27,148	19,563	25\%	40	78,816	107,102	118,428	20\%
	30	256,067	370,393	312,223	31,076	33,781	17,495	10\%	40	289,822	311,241	335,889	7\%
	31	242,625	338,540	290,670	26,101	29,821	20,763	9\%	37	271,237	292,615	301,669	5\%
	32	14,221	188,211	40,418	54,798	88,682	1,558	136\%	34	16,511	18,449	21,249	13\%
Commodity	${ }^{33}$	520	14,224	7,656	4,099	4,099	2,657	54\%	20	5,062	6,735	10,450	35\%
	34	220,882	328,788	271,849	29,810	45,917	9,561	11\%	18	251,717	261,413	296,736	8\%
	35	211,155	378,924	290,252	53,514	69,228	34,519	18\%	18	231,625	299,099	327,839	179
Credit Spread	${ }^{36}$	9,872	22,562	17,295	4,113	4,113	4,110	24\%	29	13,004	17,114	21,215	24\%
	37	11,990	23,048	17,451	3,696	4,133	3,531	21\%	25	14,490	18,361	20,097	16\%
	38	1,534	4,542	3,193	851	906	495	27\%	26	2,678	3,163	3,884	18\%
	39	6,926	13,379	10,102	1,705	1,800	984	17\%	26	9,231	10,264	10,780	8\%
	40	3,003	6,529	4,527	916	1,018	736	20\%	26	3,662	4,572	5,274	18\%
	41	2,707	11,644	7,101	1,954	3,777	1,043	28\%	26	5,973	7,531	8,173	16\%
	42	9,704	40,738	20,713	8,365	11,364	2,996	40\%	25	16,235	19,615	20,962	138
	43	9,222	46,279	16,029	7,780	18,829	2,703	49\%	29	11,676	14,130	16,812	18\%
	44	4,784	${ }^{8,696}$	6,544	1,115	1,279	641	17\%	30	5,750	6,586	7,102	11\%
	45	1,595	10,255	5,530	2,508	7,880	1,551	45\%	26	3,699	5,588	8,089	37\%
	46	2,733	13,939	6,558	2,681	7,181	1,327	41\%	30	4,501	5,814	8,130	29\%
	47	1,340	5,477	2,764	1,328	2,047	857	48\%	27	1,651	2,536	3,867	40\%
	48	5,668	12,492	9,262	2,041	2,140	1,282	22\%	29	7,527	9,708	10,648	17\%
	49	2,421	8,746	4,815	1,952	2,688	847	41\%	27	3,392	3,887	7,110	35\%
	50	11,671	37,596	19,887	7,119	9,784	4,645	36\%	28	13,952	18,859	26,435	31\%
	51	32,646	88,892	58,624	16,126	19,812	12,872	28\%	25	48,893	59,015	70,684	18\%
	52	38,414	310,499	118,464	73,115	106,320	28,284	62\%	23	78,799	109,268	136,370	27\%
	53	58,488	338,088	161,500	80,641	91,920	58,912	50\%	25	95,937	162,668	209,469	37\%
Correlation Trading	54	962	4,997	2,965	1,435	1,435	1,036	48\%	8	1,921	2,896	4,064	36%
	55	4,934	35,669	16,948	12,966	12,966	11,565	77\%	5	4,934	16,499	22,705	64\%
	56	186,900	420,339	335,047	100,282	100,282	54,814	30\%	5	282,132	365,525	420,339	20\%
ALL-N no-CTP ***	57	1,201,785	1,694,730	1,427,651	138,424	138,424	89,148	10\%	19	1,340,236	1,463,148	1,529,765	7\%
Equity Cumulative **	58	950,141	1,475,154	1,235,267	147,518	212,755	135,767	12\%	26	1,104,267	1,243,587	1,377,009	11\%
IR Cumulative **	59	177,258	564,481	373,854	93,933	103,159	59,255	25\%	36	307,411	379,424	422,208	16%
Ex Cumulative ** ${ }^{\text {a }}$	60	448,969	850,417	646,661	102,007	112,596	77,173	16\%	36	556,959	653,993	713,638	12\%
Commodity Cumulative **	61	222,801	331,312	271,902	31,318	77,529	13,504	12\%	17	250,975	257,987	296,621	8\%
CS Cumulative ** CTP Cumulative **	62 63	10,392 169,967	29,923 428,613	16,988 321,758	5,214 107,606	7,606 107,606	1,649 48,702	31% 33%	25 5	14,134 250,386	15,698 379911	19,745 379911	17\%
CTP Cumulative **	63	169,967	428,613	321,758	107,606	107,606	48,702	33\%	5	250,386	379,911	379,911	21\%

STDev trunc is the standard deviation computed excluding values below the 5 th and above the 95 th percentile
${ }^{2}$ Refers to the number of banks included in the computation of the statistics
in the computation of the benchmarks for that particular aggregate portfolio.

Table 22: sVaR statistics
EU Statistics for SVaR

		Main statistics								Percentiles			
	Port. Io	Min	Max	Ave.	STDev	STDev_trunc ${ }^{1}$	MAD (median absolute deviation)	Coefficient of variation (STDev/Mean)	Num obs. ${ }^{2}$	25th	50th	75th	IQD
Equity	1	5,678,137	8,967,891	7,558,986	825,925	1,222,894	677,109	11\%	35	6,947,230	7,350,416	8,313,255	9\%
	2	3,365,859	16,815,691	10,290,739	3,807,079	3,568,669	3,079,803	37\%	38	8,041,047	9,923,012	13,473,337	25\%
	3	13,465	47,205	29,337	10,078	9,853	8,600	34\%	37	20,809	31,355	37,438	29\%
	4	209	2,624	1,041	694	1,105	358	67\%	32	497	815	1,668	54\%
	5	1,107,869,600	3,923,350,542	2,660,753,955	613,716,006	775,025,106	367,685,862	23\%	33	2,378,851,170	2,555,504,235	3,065,253,770	13\%
	5	12,479	97,502	51,458	21,315	22,612	15,665	41\%	35	35,493	53,285	66,808	31%
	7	16,562	112,863	50,195	30,695	37,031	17,952	61\%	30	27,189	41,222	71,123	45\%
	8	56,840	206,730	125,153	43,810	42,832	35,662	35\%	36	90,606	125,258	164,454	29\%
	,	51,570	188,135	113,668	34,195	36,955	22,790	30\%	37	91,600	121,201	140,212	21\%
	10	361,618	2,611,019	977,560	385,707	2,116,268	131,420	40\%	35	820,534	1,018,607	1,132,628	16\%
Interest Rate	11	72,330	295,110	193,541	66,251	73,645	43,387	34\%	46	149,362	205,441	246,599	25\%
	12	11,089	154,369	76,387	38,135	38,015	31,525	50\%	45	44,111	79,686	103,057	40\%
	13	138,108	464,215	309,616	89,147	87,994	63,605	29\%	49	242,695	309,168	377,092	22\%
	14	26,432	136,400	78,963	28,849	28,315	24,249	37\%	49	56,281	80,747	102,100	29\%
	15	12,523	149,760	62,053	40,949	45,576	29,416	66\%	20	28,193	62,709	98,664	56\%
	16	80,009	276,954	186,889	54,932	60,109	44,690	29\%	44	151,031	193,890	219,922	199
	17	103,511	569,977	349,777	114,356	149,864	81,109	33\%	38	243,025	368,887	419,228	279
	18	80,636	496,968	299,059	90,649	311,311	62,415	30\%	36	228,258	325,705	348,233	21\%
	19	112,007	450,642	285,059	86,163	93,088	50,250	30\%	47	224,958	293,322	349,151	22\%
	20	38	58,358	14,072	11,088	24,429	5,685	79\%	45	8,018	14,728	18,858	40\%
	21	273,699	857,951	618,078	151,110	195,030	77,887	24\%	43	545,080	637,169	711,042	13\%
	22	32,078	246,445	151,503	61,918	61,918	55,037	41\%	44	98,117	155,659	209,666	36\%
	23	179,416	394,565	281,140	59,366	79,031	41,883	21\%	40	235,634	283,767	322,728	16\%
	24	98,329	1,218,012	558,114	330,098	371,681	270,914	59\%	35	257,926	536,764	844,886	53\%
	25	28,622	335,649	153,877	75,868	90,831	47,905	49\%	46	85,993	164,733	199,388	40\%
	26	49,630	1,887,597	599,740	333,028	635,362	153,930	56\%	38	367,426	629,736	702,494	31\%
FX	27	744,107	1,993,455	1,405,922	356,012	337,831	306,255	25\%	45	1,169,136	1,369,184	1,689,576	18\%
	28	6,145	42,261	25,878	10,140	12,052	8,636	39\%	40	16,749	29,340	33,382	33%
	29	205,155	531,072	387,483	87,614	97,745	47,633	23\%	40	343,143	394,746	443,121	13\%
	30	586,520	1,362,190	940,107	218,806	215,575	196,039	23\%	41	744,213	951,282	1,123,236	20\%
	31	820,087	1,455,293	1,109,905	176,723	223,123	154,401	16\%	38	942,746	1,059,293	1,277,546	15\%
	32	25,576	774,349	187,538	176,592	322,196	17,255	94\%	33	112,875	138,100	148,264	14\%
Commodity	33	1,679	44,302	20,861	12,105	12,105	6,990	58\%	20	13,771	20,366	27,357	33\%
	34	207,446	683,834	434,357	112,921	124,657	47,815	26\%	18	396,164	437,489	491,795	11\%
	35	714,869	1,287,124	1,059,750	166,900	255,782	84,117	16\%	17	1,018,879	1,066,925	1,154,506	6\%
Credit Spread	${ }^{36}$	7,618	68,350	23,335	13,065	51,463	5,340	56\%	28	15,473	22,234	25,915	25\%
	37	19,766	181,375	69,239	43,565	67,517	13,474	63\%	25	41,286	52,649	82,188	33%
	${ }^{38}$	3,937	26,788	14,443	6,939	7,506	6,606	48\%	27	7,448	16,332	19,981	46\%
	39	8,128	78,963	33,816	20,336	28,144	10,770	60\%	26	19,919	31,997	43,284	37\%
	40	6,467	38,000	17,891	8,664	11,155	4,166	48\%	24	11,345	16,599	23,881	36\%
	41	9,393	56,432	30,197	15,210	21,202	14,331	50\%	29	16,111	38,463	43,062	46\%
	42	24,182	115,078	57,803	28,967	37,529	11,471	50\%	25	39,210	49,192	84,781	37%
	43	13,879	107,130	58,663	25,386	37,384	18,958	43\%	28	36,878	65,329	73,948	33%
	44	6,685	41,719	22,193	8,928	11,802	4,893	40\%	29	14,977	22,059	25,230	26\%
	45	7,170	52,774	21,453	10,864	17,387	6,050	51\%	27	12,816	21,033	28,388	38%
	46	7,332	37,861	18,321	7,319	14,842	3,966	40\%	28	13,506	18,881	21,591	23\%
	47	1,597	24,650	10,548	5,149	10,254	1,518	49\%	27	7,663	9,200	13,016	26\%
	48	12,764	54,105	30,981	11,810	12,127	8,603	38\%	30	21,591	30,908	39,116	29\%
	49	6,310	24,485	12,806	5,928	13,150	3,717	46\%	25	8,028	13,452	16,583	35\%
	50	11,931	63,989	30,018	11,427	19,870	4,030	38\%	29	24,267	29,355	32,503	15\%
	51	59,574	391,206	182,037	72,250	114,131	51,882	40\%	24	129,378	188,252	243,403	31%
	52	89,769	824,581	403,784	228,173	223,718	204,086	57\%	27	166,510	404,573	588,499	56\%
	53	132,176	760,896	455,063	206,657	213,134	177,967	45\%	26	294,170	469,230	670,692	39\%
Correlation Trading	54	1,924	17,752	10,304	4,712	4,712	1,782	46\%	8	8,278	9,937	13,163	23\%
	55	15,010	106,641	45,488	37,416	37,416	29,270	82\%	5	15,010	44,280	46,496	51\%
	56	496,338	1,136,259	862,573	274,317	274,317	293,949	32\%	5	753,735	790,287	1,136,244	20\%
All-IN no-CTP **	57	5,088,498	7,790,838	6,607,473	915,874	1,261,282	382,186	14\%	19	5,390,844	6,782,089	7,368,934	16%
Equity Cumulative **	58	3,313,371	6,578,703	5,551,200	683,142	1,395,225	285,170	12\%	25	5,356,707	5,502,078	5,914,045	5\%
1 R Cumulative **	59	80,515	828,190	495,223	164,111	335,126	100,743	33\%	33	400,218	557,634	568,104	17\%
EX Cumulative **	60	1,788,964	3,198,304	2,553,955	414,855	437,887	299,837	16\%	35	2,260,903	2,588,491	2,911,955	13\%
Commodity Cumulative "*	61	224,277	691,123	455,764	111,912	148,203	43,718	25\%	18	394,089	436,287	500,715	12\%
CS Cumulative**	62 63 63	20,895 712,279	105,251 1059	62,629 958587	26,107 164110	35,387 268135	19,237 14,518	42\%	24	45,174 871976	r $\begin{array}{r}65,592 \\ 1030,672\end{array}$	84,678	30\%
CTP Cumulative **	63	713,279	1,059,709	958,587	164,110	268,135	14,518	17\%	4	871,976	1,030,672	1,045,198	

STDev trunc is the standard deviation computed excluding values below the 5 th and above the 95 th percentile
${ }^{2}$ Refers to the number of banks included in the computation of the statistics
in the computation of the benchmarks for that particular aggregate portfolio.

Table 23: P\&L VaR statistics

EU Statistics for PnL VaR

		Main statistics								Percentiles			
	Port. ID	Min	max	Ave.	STDev	STDev_trunc ${ }^{1}$	MAD (median absolute deviation)	Coefficient of variation (STDev/Mean)	Num obs. ${ }^{2}$	25th	50th	75th	IQD
Equity	1	2,467,031	3,153,890	2,873,542	241,103	253,394	154,530	8\%	26	2,656,370	2,933,206	3,076,940	7\%
	2	1,916,537	2,757,794	2,368,940	269,925	252,418	259,429	11\%	26	2,143,949	2,276,603	2,612,667	10\%
	3	16,746	31,041	22,556	3,388	4,623	2,123	15\%	23	20,150	21,870	24,945	11\%
	4	228	1,605	868	364	475	198	42\%	24	674	923	1,054	22%
	5	714,345,457	932,267,279	835,194,075	50,943,075	232,167,841	26,775,655	6\%	24	801,024,646	830,468,159	863,448,069	4\%
	5	14,860	43,133	33,342	7,470	10,671	5,267	22\%	23	26,307	34,485	39,532	20\%
	7	4,677	26,922	12,768	5,849	7,728	4,253	46\%	21	9,205	12,267	16,292	28\%
	8	8,841	86,953	46,423	17,624	27,345	5,577	38\%	25	36,237	44,418	51,551	17\%
	9	45,763	75,779	57,651	6,341	12,590	4,213	11\%	23	53,388	57,569	62,686	8\%
	10	245,142	313,797	276,301	20,001	24,461	7,520	7\%	23	262,472	269,069	290,784	5\%
Interest Rate	11	60,916	85,037	69,696	5,278	8,180	2,670	8\%	35	66,757	69,956	72,323	4%
	12	38,896	70,077	51,965	7,751	9,942	5,162	15\%	32	45,971	53,711	55,699	10\%
	13	130,548	169,536	150,868	10,960	13,025	7,403	7\%	33	145,813	153,224	159,228	4%
	14	20,621	34,979	28,399	3,747	4,293	2,341	13\%	35	26,248	28,121	31,177	9\%
	15	4,313	27,774	17,758	6,115	6,115	3,491	34\%	16	14,115	16,232	22,107	22\%
	16	84,037	117,079	102,661	7,663	25,249	5,484	8\%	34	96,603	104,146	107,034	5\%
	17	141,808	351,193	247,376	39,280	61,509	19,720	16\%	28	223,250	242,515	264,960	9\%
	18	74,318	482,554	283,882	109,660	121,226	56,509	39\%	29	217,213	278,248	325,231	20\%
	19	128,571	169,153	146,832	9,012	11,205	4,523	6\%	34	143,235	147,495	151,366	3%
	20	3,466	5,836	4,530	694	1,053	591	15\%	33	3,900	4,477	5,072	13\%
	21	259,738	347,952	295,811	18,513	76,457	11,573	6\%	34	283,327	298,570	306,474	4\%
	22	30,770	59,233	42,103	6,142	11,226	3,891	15\%	31	37,966	41,196	45,454	9%
	23	125,805	219,579	176,515	19,260	35,843	10,265	11\%	33	168,462	178,229	185,800	5\%
	24	88,133	598,951	242,546	135,115	305,327	64,196	56\%	26	146,176	250,980	297,012	34\%
	25	12,640	${ }^{124,546}$	47,164	25,287	62,487	7,870	54\%	32	${ }^{31,767}$	39,988	59,686	31%
	26	164,930	541,470	367,191	80,331	102,217	30,934	22\%	27	330,116	368,614	404,289	10\%
FX	27	397,391	592,434	484,713	49,127	55,515	28,941	10\%	33	442,880	485,460	501,759	6\%
	28	7,471	20,775	12,137	2,839	8,101	1,290	23\%	29	10,480	11,834	12,986	11\%
	29	62,721	125,356	92,878	14,570	16,889	12,011	16\%	30	81,245	95,536	104,338	12\%
	30	243,614	379,274	311,962	36,100	37,896	12,222	12\%	31	291,211	303,538	331,764	7\%
	31	220,667	298,214	261,469	21,349	29,267	14,336	8\%	30	239,665	267,922	278,230	7\%
	32	13,844	43,140	18,799	5,893	94,385	1,447	31\%	26	15,735	18,090	20,496	13\%
Commodity	33	582	16,588	7,805	4,481	4,481	3,193	57\%	16	4,787	7,724	11,143	40\%
	34	217,307	329,759	275,545	30,330	36,438	8,062	11\%	13	265,232	275,465	285,277	4\%
	35	225,389	433,671	321,014	58,600	58,600	37,719	18\%	14	285,391	331,344	354,868	11\%
Credit Spread	${ }^{36}$	9,658	23,893	15,933	4,044	3,902	3,382	25\%	24	12,390	16,291	18,730	20\%
	37	11,381	22,724	16,012	3,835	5,530	2,165	24\%	18	12,886	15,328	20,161	22\%
	${ }^{38}$	1,744	5,531	2,996	948	3,109	435	32\%	22	2,312	2,770	3,697	23\%
	39	6,581	13,395	9,457	2,066	2,993	751	22\%	21	7,776	9,853	10,211	14\%
	40	1,897	5,809	3,910	1,257	2,306	989	32\%	22	2,875	3,980	5,221	29\%
	41	3,185	9,253	6,344	1,407	4,134	838	22\%	23	5,619	6,471	7,318	13\%
	42	2,813	38,599	21,903	10,038	11,065	3,747	46\%	20	15,356	19,175	32,302	36\%
	43	7,234	29,646	12,944	5,000	27,956	1,837	39\%	22	10,688	11,360	14,258	14\%
	44	4,348	8,266	6,152	1,173	1,358	659	19\%	23	4,728	6,170	7,053	20\%
	45	1,350	10,151	4,593	2,457	11,589	1,162	54\%	20	3,061	4,642	5,555	29\%
	46	3,048	9,642	5,132	1,620	4,884	585	32\%	23	4,423	4,887	5,436	10\%
	47	297	5,221	2,407	1,062	1,624	574	44\%	22	1,761	2,433	2,909	25\%
	48	3,697	10,472	7,632	2,133	2,258	1,735	28\%	24	6,011	7,830	9,822	24\%
	49	2,372	7,004	4,011	1,450	2,967	452	36\%	20	3,070	3,614	4,615	20\%
	50	9,534	27,257	18,533	5,444	7,587	4,081	29\%	23	14,875	19,726	23,945	23\%
	51	44,111	81,622	60,868	11,212	20,143	7,709	18\%	19	51,974	65,173	69,925	15\%
	52	37,988	281,408	104,343	64,791	105,274	28,932	62\%	19	57,537	95,102	135,459	40\%
	53	47,452	260,787	129,277	66,201	109,734	35,642	51\%	19	77,970	124,057	168,971	37\%
Correlation Troding	54	745	7,030	3,633	2,134	2,134	1,000	59\%	6	2,952	3,060	4,952	25\%
	55	5,061	34,167	16,180	14,010	14,010	7,685	87\%	4	5,061	12,746	27,299	69\%
	56	116,360	290,852	173,354	82,289	82,289	26,742	48\%	4	116,360	143,102	230,348	33\%
All-N no-CTP **	57 58 58	1,250,931	1,657,107	1,464,248	117,760	117,760	53,352	8\%	16	1,409,650	1,468,713	1,509,931	3%
Equity Cumulative **	58	1,066,653	1,854,907	1,280,247	225,584	272,121	195,335	18\%	20	1,080,959	1,319,755	1,361,676	11\%
18 Cumulative "*	59	218,499	603,529	382,609	95,471	124,998	36,694	25\%	28	327,666	361,415	460,132	17\%
FX Cumulative **	60	526,214	813,673	646,808	92,636	91,381	78,075	14\%	30	561,507	639,002	744,773	14\%
Commodity Cumulative "*	61	194,386	330,752	271,287	37,747	117,613	11,269	14\%	13	263,496	270,980	285,334	4\%
cs Cumulative **	62 63	9,010 105724	28,315 262034	15,063 156908	5,914 7,708	8,862 77,708	1,2004 24,214	39\%	18	11,299 105724	12,964	15,032 208,093	14\%
CTP Cumulative **	63	105,724	262,034	156,908	73,708	73,708	24,214	47\%	4	105,724	129,938	208,093	33\%

STDev trunc is the standard deviation computed excluding values below the 5 th and above the 95 th percentile
Refers to the number of banks included in the computation of the statistics
in the computation of the benchmarks for that particular aggregate portfolio.

Table 24: Empirical expected shortfall statistics

EU Statistics for empirical expected shortfall

		Main statistics								Percentiles			
	Port. ID	Min	Max	Ave.	STDev	STDev_trunc ${ }^{1}$	MAD (median absolute deviation)	Coefficient of variation (STDev/Mean)	Num obs. ${ }^{2}$	25th	50th	75th	IQD
Equity	1	2,619,931	2,878,661	2,763,472	63,368	83,970	24,337	2\%	25	2,738,919	2,757,343	2,797,446	1\%
	2	2,008,067	2,672,534	2,284,172	184,607	184,607	159,673	8\%	24	2,147,314	2,312,797	2,390,978	5\%
	3	17,179	27,999	21,695	2,773	3,215	1,781	13\%	24	19,623	21,822	23,189	8\%
	4	229	2,128	974	544	633	207	56\%	24	680	937	1,044	21\%
	5	753,067,235	908,405,677	826,277,992	38,806,877	229,297,553	17,683,948	5\%	23	812,279,399	825,968,588	846,576,893	2\%
	6	17,751	44,153	34,419	7,728	10,197	6,036	23\%	23	29,498	35,860	41,896	17\%
	7	4,590	25,395	12,443	5,863	8,165	3,663	47\%	21	8,677	12,107	15,182	27\%
	8	8,804	86,042	47,237	16,392	24,709	5,666	35\%	25	39,077	43,006	51,964	14\%
	9	44,363	90,151	69,530	9,704	12,158	5,141	14\%	25	63,142	68,234	73,679	8\%
	10	246,544	299,919	276,849	14,739	15,864	7,722	5\%	23	269,013	275,847	291,943	4\%
Interest Rate	11	60,647	82,716	69,012	5,186	7,131	2,544	8\%	35	66,292	68,946	71,969	4%
	12	35,303	63,728	49,303	6,130	8,356	2,820	12\%	32	46,846	50,900	52,737	6\%
	13	130,613	170,021	146,939	8,594	11,076	5,035	6\%	33	142,721	149,434	151,639	3%
	14	25,035	34,436	30,295	2,096	3,420	1,253	7\%	31	29,017	30,727	31,762	5\%
	15	4,954	28,172	17,715	6,201	6,201	2,984	35\%	16	13,874	16,014	22,485	24\%
	16	86,535	123,566	101,343	8,781	30,738	5,721	9\%	34	95,442	102,644	106,885	6\%
	17	112,652	350,135	248,346	50,415	65,335	17,695	20\%	28	226,392	239,819	281,113	11\%
	18	86,958	511,707	297,595	111,185	128,962	42,875	37\%	28	244,797	274,174	361,576	19\%
	19	131,698	161,928	147,365	8,433	9,780	3,380	6\%	34	143,611	148,847	151,062	3\%
	20	3,619	6,346	4,567	703	989	374	15\%	33	4,131	4,479	4,924	9%
	21	241,076	332,411	288,016	17,840	74,379	10,096	6\%	34	274,795	293,771	299,141	4\%
	22	28,528	62,077	43,317	7,328	10,100	3,242	17\%	32	38,132	42,629	47,502	11\%
	23	129,474	219,104	178,316	18,421	39,796	8,435	10\%	32	169,585	181,317	184,322	4\%
	24	84,898	595,359	245,400	145,247	305,902	66,457	59\%	26	141,545	213,862	337,191	41%
	25	12,028	118,895	48,196	24,162	57,672	9,442	50\%	32	35,143	42,902	51,639	19\%
	26	229,949	559,367	385,962	81,257	102,273	20,747	21\%	26	347,598	363,910	405,952	8\%
FX	27	423,429	561,519	479,061	42,047	45,344	33,831	9\%	33	442,564	477,173	506,613	7\%
	28	7,585	20,025	11,967	2,994	7,415	1,207	21\%	29	10,398	11,653	12,883	11\%
	29	65,147	130,022	93,812	16,998	20,343	15,410	18\%	30	78,998	96,198	109,465	16\%
	30	281,772	341,495	305,698	16,033	24,558	8,946	5\%	27	293,947	302,874	314,883	3%
	31	216,999	329,290	269,466	25,721	29,535	11,736	10\%	29	256,262	275,476	281,688	5\%
	32	14,081	42,748	19,532	6,825	91,179	2,206	35\%	26	15,589	19,395	21,124	15\%
Commodity	${ }^{33}$	558	13,565	7,564	4,234	6,226	3,159	56\%	15	4,709	8,942	11,460	42%
	34	209,780	317,121	269,028	34,188	34,188	28,917	13\%	14	234,057	276,621	286,064	10\%
	35	255,746	396,379	328,796	43,340	43,340	38,525	13\%	14	292,990	338,921	358,166	10\%
Credit Spread	${ }^{36}$	10,725	24,437	15,947	3,675	4,600	2,180	23\%	23	12,575	16,840	17,819	17\%
	37	10,825	25,934	17,003	4,773	5,441	2,900	28\%	21	13,151	15,138	20,374	22\%
	38	1,855	4,767	3,003	846	3,078	525	28\%	22	2,295	2,896	3,633	23\%
	39	6,424	13,405	9,378	2,055	2,780	1,428	22\%	21	7,407	9,503	10,262	16\%
	40	1,921	6,213	4,091	1,271	2,400	1,151	31\%	22	2,846	4,243	5,147	29\%
	41	3,421	9,538	6,232	1,446	3,929	747	23\%	23	5,466	6,409	7,138	13\%
	42	3,064	39,370	21,533	9,866	12,938	5,230	46\%	20	14,770	19,186	31,453	36%
	43	6,654	30,462	13,078	4,897	26,298	1,901	37\%	22	10,602	12,345	14,050	14\%
	44	3,743	7,922	5,923	1,258	1,258	921	21\%	25	4,867	6,119	6,810	17\%
	45	-140	8,970	4,390	2,421	12,064	1,562	55\%	21	3,038	4,177	5,957	32%
	46	3,063	9,638	5,159	1,569	4,542	524	30\%	23	4,322	4,780	5,345	11\%
	47	267	4,949	2,308	1,027	1,431	546	45\%	22	1,675	2,380	2,420	18\%
	48	3,760	11,277	7,656	2,069	2,235	1,478	27\%	24	6,378	7,854	9,106	18\%
	49	2,652	7,847	3,985	1,561	2,438	389	39\%	20	2,993	3,218	4,987	25\%
	50	9,787	30,891	19,257	6,529	8,865	5,563	34\%	23	14,559	18,132	25,915	28\%
	51	18,710	92,016	58,044	14,600	24,328	9,235	25\%	20	51,038	63,522	66,193	13\%
	52	38,846	303,631	117,071	77,991	109,437	42,943	67\%	20	59,457	94,446	170,318	48\%
	53	48,794	304,585	133,908	74,541	121,212	32,379	56\%	19	75,477	117,943	199,363	45\%
Correlation Trading	54	775	7,062	3,699	2,106	2,106	912	57\%	6	3,045	3,220	4,869	23\%
	55	4,675	30,478	15,303	12,822	12,822	8,355	84\%	4	4,675	13,030	25,932	69\%
	56	112,788	285,648	164,396	82,370	82,370	16,786	50\%	4	112,788	129,574	216,004	31\%
All-IN no-CTP **	57	1,204,464	1,615,859	1,368,068	99,080	148,138	67,179	7\%	14	1,302,661	1,383,323	1,426,597	5%
Equity Cumulative **	58	1,025,346	1,633,596	1,270,385	184,847	245,667	114,826	15\%	19	1,131,253	1,288,067	1,396,794	11\%
IR Cumulative **	59	216,763	535,299	361,649	83,762	136,981	22,767	23\%	25	314,651	335,420	370,983	8\%
EX Cumulative **	60	505,649	758,971	620,473	72,926	95,289	39,017	12\%	25	581,481	614,531	651,845	6\%
Commodity Cumulative **	61	210,246	318,606	271,293	34,324	116,159	24,016	13\%	13	254,357	260,703	286,297	6\%
CS Cumulative **	62 63	7,943 103,09	30,337 259012	14,954 ${ }^{149484}$	$\begin{array}{r}6,176 \\ \hline 74,366\end{array}$	$\begin{array}{r}9,828 \\ \hline 74366\end{array}$	1,658 14,948	41\%	18	11,770	13,295 117,957	14,877	12\%
CTP Cumulative **	63	103,009	259,012	149,484	74,366	74,366	14,948	50\%	4	103,009	117,957	195,959	31\%

STDev trunc is the standard deviation computed excluding values below the 5 th and above the 95 th percentile
${ }^{2}$ Refers to the number of banks included in the computation of the statistics
in the computation of the benchmarks for that particular aggregate portfolio.

Table 25: sVaR/VaR statistics

EU Statistics for sVaR/VaR

		Main statistics								Percentiles			
	Port. ID	Min	Max	Ave.	STDev	STDev_trunc ${ }^{1}$	MAD (median absolute deviation)	Coefficient of variation (STDev/Mean)	Num obs. ${ }^{2}$	25th	50th	75th	IQD
Equity	1	2.17	3.61	2.95	0.31			11\%	31	2.73	2.94	3.18	8\%
	2	1.26	7.60	4.48	1.56			35\%	33	3.85	4.46	5.37	16\%
	3	0.70	2.20	1.47	0.42			28\%	34	1.13	1.43	1.78	22%
	4	0.30	4.45	1.65	1.21			73\%	30	0.75	1.18	2.10	47\%
	5	1.47	4.21	3.24	0.56			17\%	31	3.15	3.37	3.54	6\%
	6	0.54	3.16	1.58	0.60			38\%	32	1.32	1.50	1.76	14\%
	7	0.92	14.99	4.63	3.52			76\%	26	2.44	3.29	5.36	37\%
	8	0.59	3.56	1.38	0.59			42\%	32	0.98	1.31	1.60	24\%
	9	0.70	2.66	1.81	0.52			29\%	32	1.49	1.79	2.18	19\%
	10	1.26	4.76	3.32	0.91			27\%	33	3.06	3.48	3.93	12\%
Interest Rate	11	0.96	4.19	2.77	0.96			35\%	38	2.07	3.17	3.43	25\%
	12	0.40	4.02	1.83	0.92			50\%	36	1.04	1.81	2.34	39\%
	13	0.98	2.82	2.14	0.54			25\%	40	1.80	2.23	2.57	18\%
	14	0.92	4.30	2.98	0.99			33\%	39	2.20	3.22	3.89	28\%
	15	1.24	10.60	3.62	2.41			67\%	18	2.15	2.42	4.32	34\%
	16	0.81	2.82	1.83	0.53			29\%	37	1.50	1.94	2.19	19\%
	17	0.57	2.47	1.49	0.50			34\%	34	1.03	1.51	1.70	25\%
	18	0.32	2.96	1.20	0.61			51\%	32	0.81	1.05	1.46	28\%
	19	0.76	3.12	1.98	0.59			30\%	38	1.56	2.05	2.36	20\%
	20	0.02	16.19	3.83	2.77			72\%	35	2.42	3.75	4.46	30\%
	21	1.06	3.10	2.24	0.46			21\%	35	2.05	2.30	2.54	11\%
	22	0.73	5.32	3.12	1.34			43\%	38	1.98	3.36	4.37	38\%
	23	1.07	2.32	1.70	0.32			19\%	32	1.44	1.72	1.94	15\%
	24	0.33	8.14	3.02	1.51			50\%	31	2.32	2.92	3.56	21\%
	25	0.87	9.12	3.94	1.92			49\%	40	2.62	3.87	5.20	33\%
	26	0.13	5.25	1.71	1.03			60\%	34	1.07	1.47	1.93	29\%
fx	27	1.49	4.95	2.95	0.89			30\%	38	2.36	2.64	3.58	20\%
	28	0.76	3.80	2.24	0.73			32\%	38	1.80	2.24	2.57	18\%
	29	1.81	7.83	4.19	1.55			37\%	35	3.38	3.84	4.50	14\%
	30	1.68	4.33	3.11	0.68			22\%	34	2.56	3.19	3.64	17\%
	31	2.99	4.85	3.94	0.51			13\%	30	3.52	3.95	4.31	10\%
	32	1.32	18.66	7.23	2.85			39\%	28	6.19	6.83	8.15	14\%
Commodity	${ }^{33}$	0.58	5.59	2.98	1.15			39\%	18	2.69	3.06	3.46	13\%
	34	0.80	2.08	1.66	0.30			18\%	16	1.56	1.74	1.84	8%
	35	2.33	5.82	3.87	1.02			26\%	15	3.13	3.64	4.41	17\%
Credit Spread	${ }^{36}$	0.36	4.55	1.45	0.93			64\%	27	0.99	1.10	1.67	5\%
	37	0.92	9.02	4.02	1.98			49\%	22	2.87	3.45	4.38	21\%
	${ }^{38}$	1.26	8.21	4.47	1.91			43\%	24	2.81	4.23	6.20	38\%
	39	0.74	8.01	3.53	2.02			57\%	23	1.69	3.20	4.30	44\%
	40	1.36	7.87	4.03	1.73			43\%	21	3.07	3.63	4.47	19\%
	41	1.28	12.72	4.21	2.50			59\%	26	2.10	3.49	5.10	42\%
	42	1.11	7.54	3.07	1.80			58\%	22	1.62	2.40	4.04	43\%
	43	1.50	8.37	4.10	1.95			48\%	27	2.70	3.35	5.10	31\%
	44	1.33	6.92	3.46	1.47			42\%	25	2.38	3.00	4.51	31%
	45	1.29	11.50	4.47	2.70			60\%	24	2.24	3.78	6.00	46\%
	46	1.25	5.46	3.10	1.24			40\%	27	1.97	2.98	4.16	36\%
	47	0.70	7.95	4.18	1.88			45\%	25	2.98	4.18	5.56	30\%
	48	1.49	5.31	3.40	0.96			28\%	26	2.79	3.28	4.15	20\%
	49	0.80	7.22	3.06	1.70			56\%	24	1.95	2.42	4.05	35\%
	50	0.81	3.16	1.58	0.60			38\%	26	1.15	1.51	1.92	25\%
	51	1.48	4.81	2.90	0.96			33\%	20	2.10	2.76	3.84	29\%
	52	0.86	7.86	3.41	2.24			66\%	22	1.74	2.59	4.75	46\%
	53	0.98	6.75	3.05	1.63			53\%	23	2.07	2.31	3.17	21\%
Correlation Troding	54	1.38	8.40	3.93	2.07			53\%	8	2.79	3.64	4.47	23\%
	55	2.05	3.04	2.76	0.38			14\%	5	2.68	2.99	3.04	6\%
	56	2.06	2.80	2.59	0.27			10\%	5	2.66	2.70	2.70	1\%
All-IN no-CTP ***	57	3.45	${ }^{6.13}$	4.67	0.79			17\%	19	4.16	4.64	5.09	10\%
Equity Cumulative **	58	2.66	6.60	4.58	0.95			21\%	22	4.01	4.54	4.70	8\%
1 C cumulative **	59	0.29	3.05	1.36	0.57			42\%	29	1.05	1.27	1.53	19\%
FXCumulative **	60	2.36	6.15	4.03	0.78			19\%	31	3.54	3.83	4.39	11\%
Commodity Cumulative **	61	1.25	2.09	1.73	0.22			13\%	16	1.64	1.75	1.82	5\%
CS Cumulative **	62	1.92	6.51	3.76	1.33			35\%	24	2.40	3.73	4.83	34\%
CTP Cumulative *-	63	2.47	2.85	2.69	0.14			5\%	4	2.65	2.71	2.75	2\%

STDev trunc is the standard deviation computed excluding values below the 5 th and above the 95th percentile
Refers to the number of banks included in the computation of the statistic
in the computation of the benchmarks for that particular aggregate portfolio.

Table 26: P\&L VaR/VaR statistics
EU Statistics for P\&L VaR/VaR

		Main statistics								Percentiles		
	Port. ID	Min	Max	Ave.	STDev	STDev_trunc ${ }^{1}$	$\begin{gathered} \hline \text { MAD (median } \\ \text { absolute } \\ \text { deviation) } \\ \hline \end{gathered}$	Coefficient of variation (STDev/Mean)	Num obs. ${ }^{2}$	25th	50th	75th
Equity	1	0.71	1.20	0.98	0.10			10\%	26	0.96	1.00	1.03
	2	0.81	1.25	1.00	0.09			9\%	24	0.96	1.02	1.03
	3	0.56	1.87	0.96	0.24			25\%	25	0.83	0.95	1.05
	4	0.00	1.60	0.92	0.39			42\%	26	0.60	1.05	1.18
	5	0.82	129.02	10.84	33.34			308\%	25	0.96	1.04	1.07
	6	0.57	1.31	1.02	0.18			18\%	24	0.98	1.03	1.15
	7	0.58	2.44	0.98	0.38			39\%	21	0.79	0.89	1.09
	8	0.54	7.01	2.30	1.30			56\%	24	1.58	2.33	2.82
	9	-419.20	1.51	-15.69	82.37			-525\%	24	0.94	1.05	1.26
	10	0.82	11.39	1.43	2.03			142\%	25	0.99	1.02	1.05
Interest Rate	11	0.34	1.21	0.99	0.14			15\%	31	1.00	1.01	1.06
	12	0.60	1.02	0.81	0.09			11\%	27	0.75	0.82	0.86
	13	0.32	1.34	0.98	0.17			17\%	31	0.97	1.02	1.06
	14	0.32	1.38	0.95	0.18			19\%	31	0.87	0.98	1.02
	15	0.60	1.30	0.94	0.20			21\%	14	0.77	0.93	1.07
	16	0.84	1.09	1.00	0.06			6\%	28	0.99	1.00	1.04
	17	0.63	1.45	1.02	0.17			17\%	27	0.98	1.01	1.10
	18	0.86	1.65	1.12	0.22			20\%	26	1.00	1.05	1.16
	19	0.74	1.19	1.00	0.10			10\%	32	0.96	1.00	1.03
	20	0.32	1.27	1.01	0.18			17\%	31	0.99	1.04	1.09
	21	0.34	1.11	0.96	0.13			13\%	31	0.95	1.00	1.01
	22	0.74	1.60	1.20	0.18			15\%	29	1.14	1.18	1.30
	23	0.44	1.31	0.96	0.16			17\%	32	0.83	1.00	1.06
	24	0.31	1.20	0.90	0.27			30\%	23	0.93	1.00	1.06
	25	0.18	1.53	0.94	0.29			31\%	31	0.85	1.00	1.05
	26	0.69	1.50	1.02	0.15			14\%	26	0.96	1.01	1.09
fx	${ }^{27}$	0.33	1.21	0.98	0.16			17\%	31	0.92	1.02	1.08
	28	0.35	1.27	0.93	0.19			21\%	29	0.77	1.00	1.08
	29	0.35	2.17	1.13	0.31			27\%	28	1.00	1.07	1.25
	30	0.32	1.16	0.98	0.15			15\%	29	0.97	0.99	1.02
	31	0.92	1.30	1.12	0.11			10\%	26	1.05	1.11	1.21
	32	0.33	1.33	0.98	0.19			19\%	28	0.91	1.03	1.05
Commodity	${ }^{33}$	0.58	1.92	1.10	0.32			30\%	14	0.93	1.08	1.21
	34	0.88	1.20	1.01	0.11			10\%	13	0.90	1.00	1.10
	35	0.60	1.03	0.92	0.14			15\%	13	0.89	0.99	1.02
Credit Spread	${ }^{36}$	0.33	1.60	1.12	0.25			23\%	24	1.04	1.08	1.28
	37	0.32	1.23	1.00	0.18			18\%	20	0.97	1.00	1.06
	38	0.32	2.56	1.19	0.48			40\%	20	0.98	1.02	1.37
	39	0.32	1.41	1.03	0.22			22\%	21	1.00	1.02	1.11
	40	0.32	2.55	1.21	0.48			40\%	21	1.00	1.02	1.39
	41	0.32	1.56	1.03	0.21			21\%	21	0.97	1.01	1.08
	42	0.33	6.87	1.19	1.32			111\%	20	0.72	1.01	1.04
	43	0.32	1.58	1.10	0.26			24\%	23	1.01	1.05	1.23
	44	0.33	1.89	1.12	0.33			29\%	25	0.97	1.09	1.13
	45	-16.07	2.63	0.42	3.62			870\%	21	0.98	1.08	1.34
	46	0.32	2.23	1.08	0.36			33\%	24	0.96	1.03	1.12
	47	0.32	5.82	1.34	1.12			84\%	20	0.95	1.01	1.04
	48	0.33	2.37	1.11	0.40			36\%	23	0.98	1.02	1.06
	49	0.33	2.24	1.21	0.44			36\%	21	1.00	1.08	1.47
	50	0.32	1.35	1.05	0.20			19\%	23	0.99	1.05	1.18
	51	0.33	1.70	0.97	0.29			30\%	20	0.81	1.03	1.11
	52	0.33	1.54	1.05	0.28			27\%	19	0.96	1.10	1.12
	53	0.33	1.30	1.05	0.22			21\%	20	0.98	1.06	1.23
Correlation Troding	54	0.71	1.29	0.95	0.19			20\%	6	0.83	0.88	1.06
	55	0.97	1.11	1.03	0.06			6\%	4	0.97	1.01	1.06
	56	0.97	3.61	2.32	1.29			55\%	4	1.07	2.36	3.61
ALL-IN no-CTP **	57	0.73	1.12	0.99	0.11			11\%	15	0.98	1.03	1.05
Equity Cumulative **	58	0.23	1.29	0.95	0.25			27\%	18	0.91	1.04	1.09
IR Cumulative **	59	0.88	1.64	1.11	0.17			15\%	23	1.01	1.05	1.15
FX Cumulative **	60	0.66	1.32	1.02	0.15			15\%	26	0.95	1.04	1.09
Commodity Cumulative **	61	0.88	1.21	1.01	0.11			11\%	12	0.90	1.00	1.09
cs Cumulative **	62	0.78	2.11	1.19	0.30			25\%	18	1.01	1.07	1.25
CTP Cumulative **	63	0.96	3.59	2.31	1.28			56\%	4	1.07	2.35	3.59

Refers to the number of banks included in the computation of the statistic
*For the aggregated porffolios (57 to 63), banks that reported at least a missing portfolio IMV among the ones composing the aggregate are not included
in the computation of the benchmarks for that particular aggregate porffolio.

Figure 17: IMV scatter plots (all)

IMV(level) - instrument 1

IMV(level) - instrument 3

IMV(level) - instrument 5

IMV(level) - instrument 2

IMV(level) - instrument 4

IMV(level) - instrument 6

IMV(level) - instrument 7

IMV(level) - instrument 9

IMV(level) - instrument 11

IMV(level) - instrument 8

IMV(level) - instrument 10

IMV(level) - instrument 12

IMV(level) - instrument 13

IMV(level) - instrument 15

IMV(level) - instrument 17

IMV(level) - instrument 14

IMV(level) - instrument 16

IMV(level) - instrument 18

IMV(level) - instrument 19

IMV(level) - instrument 21

IMV(level) - instrument 23

IMV(level) - instrument 20

IMV(level) - instrument 22

IMV(level) - instrument 24

IMV(level) - instrument 25

IMV(level) - instrument 27

IMV(level) - instrument 29

IMV(level) - instrument 26

IMV(level) - instrument 28

IMV(level) - instrument 30

IMV(level) - instrument 31

IMV(level) - instrument 33

IMV(level) - instrument 35

IMV(level) - instrument 32

IMV(level) - instrument 34

IMV(level) - instrument 36

IMV(level) - instrument 37

IMV(level) - instrument 39

IMV(level) - instrument 41

IMV(level) - instrument 38

IMV(level) - instrument 40

IMV(level) - instrument 42

IMV(level) - instrument 43

IMV(level) - instrument 45

IMV(level) - instrument 47

IMV(level) - instrument 46

IMV(level) - instrument 48

IMV(level) - instrument 49

IMV(level) - instrument 51

IMV(level) - instrument 53

IMV(level) - instrument 50

IMV(level) - instrument 52

IMV(level) - instrument 54

IMV(level) - instrument 55

IMV(level) - instrument 57

IMV(level) - instrument 59

IMV(level) - instrument 56

IMV(level) - instrument 58

IMV(level) - instrument 60

IMV(level) - instrument 61

IMV(level) - instrument 63

IMV(level) - instrument 65

IMV(level) - instrument 62

IMV(level) - instrument 64

IMV(level) - instrument 66

IMV(level) - instrument 67

IMV(level) - instrument 69

IMV(level) - instrument 71

IMV(level) - instrument 68

IMV(level) - instrument 70

IMV(level) - instrument 72

IMV(level) - instrument 73

IMV(level) - instrument 75

IMV(level) - instrument 74

Figure 18: VaR submissions normalised by the median of each portfolio (by asset class)

VaR: All portfolios
(ratio with the median)

VaR: Aggregated portfolios

(ratio with the median)

VaR: Commodity portfolios
(ratio with the median)

VaR: Credit Spread portfolios
(ratio with the median)

VaR: CTP portfolios

(ratio with the median)

VaR: Equity portfolios
(ratio with the median)

VaR: FX portfolios

(ratio with the median)

VaR: Interest Rate portfolios

(ratio with the median)

Figure 19: sVaR submissions normalised by the median of each portfolio (by asset class)

SVaR: All portfolios

(ratio with the median)

- Equity - InterestRate FX © Commodity - CreditSpread © CTP All-in

SVaR: Aggregated portfolios

(ratio with the median)

SVaR: Commodity portfolios
(ratio with the median)

SVaR: Credit Spread portfolios
(ratio with the median)

SVaR: CTP portfolios

(ratio with the median)

SVaR: Equity portfolios
(ratio with the median)

SVaR: FX portfolios

(ratio with the median)

SVaR: Interest Rate portfolios

Figure 20: sVaR submissions normalised by the median of each portfolio (by methodological approach)

SVaR: all portfolios (exc. aggregated)

(ratio with the median - HS banks in orange)

SVaR: all portfolios (exc. aggregated)
(ratio with the median below 50\% - HS banks in orange

Table 27: VaR statistics (small banks only)

EU Statistics for VaR

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \multicolumn{8}{|c|}{Other stats} \& \multicolumn{7}{|c|}{Percentiles} \& \multirow[b]{2}{*}{\begin{tabular}{|c|}
\hline Intercuantile \\
range
\end{tabular}} \\
\hline \& Port. ID \& Min \& Max \& Ave. \& STDev \& STDev_trunc' \& \[
\begin{array}{|c|}
\hline \text { MAD (median } \\
\text { absolute } \\
\text { deviation) }
\end{array}
\] \& \[
\begin{array}{|c|}
\hline \text { Coefficient of } \\
\text { variation } \\
\text { (STDev/Mean) } \\
\hline
\end{array}
\] \& Num obs. \& 5th \& 10th \& 25th \& 50 th (Median) \& 75th \& 90th \& 95th \& \\
\hline \multirow{9}{*}{Equity} \& 1 \& 2,148,037 \& 2,736,658 \& 2,403,158 \& 236,731 \& \& \& 10\% \& \& 2,150,469 \& 2,152,901 \& 2,171,172 \& 2,495,262 \& 2,549,904 \& 2,631,959 \& 2,684,309 \& \({ }^{8 \%}\) \\
\hline \& 2 \& 1,984,839 \& 2,355,007 \& 2,232,890 \& 138,071 \& \& \& 6\% \& \& 2,025,031 \& 2,065,223 \& 2,161,883 \& 2,312,119 \& 2,327,248 \& 2,341,683 \& 2,348,345 \& 4\% \\
\hline \& 3 \& 12,800 \& 26,890 \& 16,869 \& 5,524 \& \& \& 33\% \& 6 \& 12,808 \& 12,815 \& 12,989 \& 14,633 \& 18,521 \& 23,159 \& 25,025 \& 18\% \\
\hline \& \({ }_{5}^{4}\) \& 143 \& 1,716 \& 722 \& 542 \& \& \& 75\% \& \& 208 \& 273 \& 437 \& 621 \& 798 \& 1,273 \& 1,495 \& 29\% \\
\hline \& 5 \& 727,947,916 \& 948,265,719 \& 801,052,469 \& 93,469,995 \& \& \& 12\% \& 6 \& \(728,093,026\) \& 728,238,137 \& 732,970,448 \& 757,36, 164 \& 857,29, 274 \& 917,523,108 \& 932,894,414 \& \({ }^{8 \%}\) \\
\hline \& \({ }_{6}^{6}\) \& 18,544 \& 45,808 \& 31,008 \& 9,891 \& \& \& 32\% \& 7 \& 19,867 \& 21,191 \& 23,240 \& 30,851 \& 37,688 \& 41,603 \& 43,706 \& 24\% \\
\hline \& \({ }_{8}\) \& 9,181
44,948 \& 15,479
113,825 \& 12,330
77,830 \& 4,453
28,084 \& \& \& \(36 \%\)
\(36 \%\) \& - \(\begin{array}{r}2 \\ 6\end{array}\) \& 9,496
47,941 \& 9,811
50,934 \& 10,756
58,976 \& 12,330
71,173 \& 13,905
101,08 \& 14,849
111,385 \& 15,164
112,605 \& \begin{tabular}{l}
\(13 \%\) \\
\(26 \%\) \\
\hline
\end{tabular} \\
\hline \& 9 \& 45,420 \& 80,584 \& 62,621 \& 14,367 \& \& \& 23\% \& \({ }_{6} 6\) \& 47,315 \& 49,210 \& 54,323 \& 58,567 \& 74,402 \& 80,886 \& 80,335 \& 16\% \\
\hline \& 10 \& 158,743 \& 290,245 \& 257,552 \& 49,593 \& \& \& 19\% \& 6 \& 183,935 \& 209,127 \& 263,178 \& 275,110 \& 283,955 \& 288,419 \& 289,332 \& 4\% \\
\hline \multirow{14}{*}{Interst Rote} \& \({ }_{12}\) \& 65,498 \& 77,076 \& 69,295 \& \({ }^{3,483}\) \& \& \& 5\% \& \({ }^{12}\) \& 65,641 \& 65,783 \& 66,153 \& 69,035 \& 70,476 \& 72,908 \& 74,827 \& \({ }^{3 \%}\) \\
\hline \& 12 \& 27,936 \& 48,403 \& 33,790 \& 7,629 \& \& \& 23\% \& 6 \& 28,207 \& 28,478 \& 29,121 \& 31,290 \& 34,388 \& 41,602 \& 45,002 \& \(8 \%\) \\
\hline \& \({ }^{13}\) \& 118,767 \& 169,957 \& 143,346 \& 15,203 \& \& \& 11\% \& \({ }^{11}\) \& 121,419 \& 124,071 \& 134,031 \& 144,541 \& 152,419 \& 156,862 \& 163,410 \& \(6 \%\) \\
\hline \& 14 \& 23,327 \& 29,502 \& 26,788 \& \({ }^{2,123}\) \& \& \& 8\% \& 11 \& 23,814 \& 24,300 \& 25,009 \& 27,439 \& 28,199 \& 29,473 \& 29,488 \& 6\% \\
\hline \& 15
16
16 \& 10,103
93378 \& \({ }^{31,178}\) \& 20,641 \& \({ }^{14,902}\) \& \& \& 72\% \& \(2^{2}\) \& \({ }^{11,157}\) \& 12,211 \& 15,372 \& 20,641 \& 25,909 \& 29,071 \& 30,124 \& 26\% \\
\hline \& \({ }_{17}^{16}\) \& \({ }^{93,378}\) \& 110,441 \& 102,031

222406 \& $\begin{array}{r}6,590 \\ \hline 3,256\end{array}$ \& \& \& 6\% \& ${ }_{8}^{9}$ \& 93,558 \& 93,738 \& 96,600 \& 103,299
23967 \& 106,809 \& 109,897 \& 110,169 \& 5%
6%

\hline \& 18 \& 143,647
71,227 \& 258,130
424,949 \& 222,406
226,262 \& 126,041 \& \& \& 56\% \& 10 \& 150,766
73,915 \& 157,84
76,63 \& 218,788
10,088 \& ${ }^{239,697}$ \& 246,725
308,126 \& 254,020
365478 \& 256,075
395,213 \& 50\%

\hline \& 19 \& 127,891 \& 160,306 \& 142,882 \& 8,512 \& \& \& 6\% \& 11 \& 130,510 \& 133,128 \& 140,065 \& 142,889 \& 145,742 \& 150,767 \& 155,537 \& 2%

\hline \& ${ }^{20}$ \& 3,600 \& 6,935 \& 4,814 \& 1,215 \& \& \& 25\% \& ${ }^{9}$ \& 3,602 \& 3,604 \& 3,912 \& 4,103 \& 5,726 \& 6,122 \& 6,529 \& 19\%

\hline \& ${ }_{22}^{21}$ \& 248,923 \& 321,710 \& 281,999 \& 25,704 \& \& \& 9\% \& ${ }^{11}$ \& 253,738 \& 258,53 \& 264,552 \& 275,179 \& 303,528 \& 319,311 \& 320,511 \& 7%

\hline \& 22
23
23 \& 35,509
141,780 \& 57,377
191,324 \& 44,844
164,726 \& 7,07
19,273 \& \& \& 16\% \& 8
11 \& 36,254
142,491 \& 36,999
143,202 \& 39,409
148,198 \& 46,035
167,115 \& 47,963
179,845 \& 51,035
190,074 \& 54,206
190,69 \& 10\%
10\%

\hline \& 24 \& 43,07 \& 403,906 \& 194,404 \& 113,758 \& \& \& 59\% \& 7 \& 73,375 \& 103,74 \& 145,275 \& 168,658 \& 227,353 \& 321,858 \& 362,882 \& 22\%

\hline \& 25 \& 25,071 \& 98,576 \& 49,782 \& 26,721 \& \& \& 54\% \& 10 \& 26,838 \& 28,604 \& 30,550 \& 36,369 \& 60,304 \& 91,634 \& 95,105 \& 33\%

\hline \& 26 \& 166,144 \& 504,299 \& 328,926 \& 103,328 \& \& \& 31\% \& 9 \& 186,060 \& 205,975 \& 244,325 \& 358,065 \& 371,190 \& 414,913 \& 459,606 \& 21\%

\hline \multirow{5}{*}{${ }_{\text {Fx }}$} \& ${ }^{27}$ \& 405,693 \& 584,323 \& 492,986 \& 55,864 \& \& \& 11\% \& 11 \& 422,01 \& 438,309 \& 462,722 \& 488,152 \& 522,276 \& 579,838 \& 582,081 \&

\hline \& ${ }^{28}$ \& 3,899 \& 15,291 \& 10,709 \& 3,539 \& \& \& 33\% \& 10 \& 5.278 \& 6,658 \& 8.592 \& ${ }^{11,492}$ \& 12,988 \& 14,579 \& 14,935 \& 20\%

\hline \& 29
30 \& 65,112 \& 131,960
369840 \& 96,563
304918 \& 22,947 \& \& \& 24\% \& ${ }_{10}^{10}$ \& 68,426 \& 71,740
274397 \& 77,203 \& 98,435 \& ${ }^{113,696}$ \& ${ }^{121,351}$ \& 126,655 \& $\begin{array}{r}19 \% \\ \hline 6 \%\end{array}$

\hline \& 30
31 \& 261,170
242,625 \& 369,840
338,50 \& 304,918
290,609 \& 33,294
26,107 \& \& \& 11%

9% \& ${ }_{11}^{9}$ \& | 267,784 |
| :--- |
| 256408 | \& 274,397

270,190 \& 284,900
274,39 \& 295,218
29, 275 \& 321,786
300,56 \& 343,150

318,34 \& | 356,495 |
| :---: |
| 328,42 | \& 6%

5%

\hline \& 32 \& 16,197 \& 23,219 \& 18,295 \& 2,559 \& \& \& 14\% \& 6 \& 16,363 \& 16,530 \& 16,866 \& 17,522 \& 18,378 \& 20,834 \& 22,027 \& 4\%

\hline \multirow{3}{*}{Commodit} \& ${ }^{33}$ \& 520 \& 13,676 \& 6,362 \& 6,700 \& \& \& 105\% \& 3 \& 957 \& 1,394 \& 2,706 \& 4,891 \& 9,284 \& ${ }^{11,919}$ \& 12,798 \& 55\%

\hline \& ${ }^{34}$ \& 251,518 \& 251,717 \& 251,618 \& 141 \& \& \& 0\% \& ${ }^{2}$ \& 251,528 \& 251,538 \& 251,568 \& 251,618 \& 251,667 \& 251,697 \& 251,707 \& \%\%

\hline \& ${ }^{35}$ \& 224,173 \& 300,145 \& 264,715 \& 38,243 \& \& \& 14\% \& 3^{3} \& 228,739 \& 233,304 \& 247,001 \& 269,828 \& 284,987 \& 294,082 \& 297,113 \& 7\%

\hline \multirow{16}{*}{Credit Spread} \& ${ }^{36}$ \& ${ }^{11,549}$ \& 22,328 \& 18,367 \& 5,930 \& \& \& 32\% \& 3^{3} \& 12,517 \& 13,484 \& 16,387 \& 21,224 \& 21,776 \& 22,107 \& 22,218 \& ${ }^{14 \%}$

\hline \& ${ }^{37}$ \& 13,303 \& 20,761 \& 16,185 \& 4,007 \& \& \& 25\% \& 3^{3} \& 13,422 \& 13,540 \& 13,897 \& 14,490 \& 17,626 \& 19,507 \& 20,134 \& 12\%

\hline \& 38
30
30 \& 2,241 \& 3,884 \& ${ }^{3,038}$ \& 725 \& \& \& 24\% \& 4_{4}^{4} \& 2,307 \& 2,372 \& 2,569 \& 3,014 \& 3,484 \& 3,724 \& 3,804 \& 15\%

\hline \& 39 \& 9,318
3,191 \& 13,249
5475 \& 11,184

4 \& | 1,973 |
| :--- |
| 1 |
| 1011 | \& \& \& 18\% \& 3_{3}^{3} \& 9,485

3,262 \& ${ }^{9,651}$ \& $\begin{array}{r}10,151 \\ 3,544 \\ \hline\end{array}$ \& 10,984 \& 12,117

4,798 \& | 12,796 |
| :---: |
| 5,204 | \& 13,023

5380 \& 9\%

\hline \& ${ }_{4}^{40}$ \& 3,191
5,969 \& 5,475
7,881 \& 4,225
6,580 \& 1,011
856 \& \& \& 24\% \& - ${ }_{4}^{4}$ \& 3,262
5,988 \& 3,332
6,006 \& 3,544
6,062 \& 4,177 \& 4,798
6,777 \& 5,204
7409 \& 5,340
7,620 \& +6\%

\hline \& ${ }_{4}$ \& 19,615 \& 38,345 \& 26,307 \& 10,477 \& \& \& 40\% \& 3 \& 19,750 \& 19,884 \& 20,289 \& 20,962 \& 29,654 \& 34,868 \& 36,607 \& 19\%

\hline \& ${ }^{43}$ \& 9,602 \& 14,440 \& 12,060 \& 2,038 \& \& \& 17\% \& 5 \& 9,737 \& 9,873 \& 10,279 \& 12,987 \& 12,993 \& 13,861 \& 14,151 \& 12\%

\hline \& 44 \& 4,965 \& 8,696 \& 6,385 \& 1,505 \& \& \& 24\% \& 5 \& 5,005 \& 5,045 \& 5,165 \& 6,265 \& ${ }_{6,834}$ \& 7,951 \& 8,324 \& 14\%

\hline \& 45 \& 5,588 \& 10,255 \& 7,474 \& 2,156 \& \& \& 29\% \& 4^{4} \& 5,645 \& 5,701 \& 5,871 \& 7,027 \& 8,631 \& 9,605 \& 9,930 \& 19\%

\hline \& ${ }^{46}$ \& 4,482 \& 5,354 \& 4,779 \& 407 \& \& \& 9\% \& 4 \& 4,485 \& 4,488 \& 4,496 \& 4,639 \& 4,921 \& 5,181 \& 5,267 \& 5\%

\hline \& 47 \& 1,340 \& 3,408 \& ${ }^{2,428}$ \& ${ }^{1,038}$ \& \& \& 43\% \& ${ }^{3}$ \& ${ }^{1,460}$ \& 1,579 \& 1,938 \& 2,536 \& 2,972 \& 3,234 \& ${ }^{3,321}$ \& 21\%

\hline \& ${ }^{48}$ \& 6,622 \& 11,010 \& 9,162 \& 1,848 \& \& \& 20\% \& 4^{4} \& 7,016 \& 7,410 \& 8.592 \& 9,509 \& 10,079 \& 10,638 \& 10,824 \& 8%

\hline \& 49 \& 3,825 \& 7,680 \& 5,753 \& 2,726 \& \& \& 47\% \& ${ }^{2}$ \& 4,018 \& 211 \& 4,789 \& 5,753 \& 716 \& 7,295 \& 487 \& 17\%

\hline \& 50
51 \& 15,465 \& 29,872 \& 24,499 \& 7,870 \& \& \& 32\% \& \& 16,734 \& 18,004 \& ${ }^{21,812}$ \& 28,159 \& 29,016 \& 29,529 \& 29,701 \& ${ }^{14 \%}$

\hline \& 52 \& | 46,903 |
| :---: | \& 281,923 \& 59,82

145,136 \& 12,298
128 \& \& \& 84\% \& ${ }_{3}^{3}$ \& 52,
4,71 \& 58,539 \& 76,743 \& 51,30
107,83 \& 6,962
19,503 \& 246,955 \& $\begin{array}{r}76,599 \\ \hline 2649\end{array}$ \& 43\%

\hline \& 53 \& 73,168 \& 266,588 \& 145,221 \& 105,696 \& \& \& 73\% \& 3 \& 75,445 \& 77,722 \& 84,553 \& 95,937 \& 181,248 \& 232,434 \& 249,496 \& 36\%

\hline \multirow{3}{*}{CTP} \& | 54 |
| :--- |
| 55 | \& 2,444 \& ${ }^{2,444}$ \& ${ }^{2,444}$ \& \#DIV/0! \& \& \& \#olvo! \& ${ }^{1}$ \& 2,444 \& 2,444 \& ${ }^{2,444}$ \& ${ }^{2,444}$ \& ${ }^{2,444}$ \& 2,444 \& 2,444 \&

\hline \& 55 \& 4,934 \& 4,934 \& 4,934 \& \#IVV/0! \& \& \& \#OV/\%! \& 1 \& 4,934 \& 4,934 \& 4,934 \& 4,934 \& 4,934 \& 4,934 \& 4,934 \& 0\%

\hline \& 56 \& 420,339 \& 420,339 \& 420,339 \& \#IVV/0! \& \& \& \#olvo! \& 1 \& 420,339 \& 420,339 \& 420,339 \& 420,339 \& 420,339 \& 420,339 \& 420,339 \& \%

\hline $\overline{\text { Aut-N no.CTP }}$ \& ${ }^{57}$ \& 1,204,091 \& 1,497,085 \& 1,350,588 \& 207,178 \& \& \& 15\% \& \& 1,218,741 \& 1,233,390 \& ${ }^{1,277,340}$ \& 1,350,588 \& 1,423,837 \& 1,467,786 \& 1,482,435 \& 5%

\hline Equiry Cumulotive \& ${ }_{58}$ \& 1,026,896 \& 1,391,385 \& 1,209,141 \& 257,733 \& \& \& 21\% \& \& 1,045,120 \& 1,063,345 \& 1,118,018 \& 1,209,141 \& 1,300,263 \& 1,354,936 \& 1,373,161 \& 8%

\hline 1 R Cumulative \& 59 \& 177,258 \& 484,144 \& 314,504 \& 96,640 \& \& \& 31\% \& 9 \& 198,422 \& 219,626 \& 258,500 \& 280,123 \& 390,032 \& 1694 \& 447,919 \& 20\%

\hline EXCumulative \& 60 \& 549,532 \& 811,37 \& 660,764 \& 81,370 \& \& \& 12\% \& 8 \& 569,016 \& 588,500 \& 615,474 \& 646,188 \& 688,980 \& 758,003 \& 784,690 \& 6\%

\hline Commodity Cumulative \& ${ }_{61}$ \& 251,978 \& 252,006 \& 251,992 \& \& \& \& 0\% \& \& 251,979 \& 251,981 \& 251,985 \& 251,992 \& 251,999 \& 252,003 \& 252,005 \& 0\%

\hline ${ }_{\text {cs comuative }}$ \& 62 \& 11,284 \& 15,698 \& ${ }^{13,648}$ \& 2,062 \& \& \& 15\% \& 4_{4}^{4} \& 11,481 \& 11,679 \& 12,270 \& ${ }^{13,806}$ \& 15,184 \& 15,492 \& 15,595 \& ${ }^{11 \%}$

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 379,911 \& 0

\hline
\end{tabular}

Figure 21: VaR ratio with median (focus on small banks)
VaR: all portfolios (exc. aggregated)
(ratio with the median - Small banks in orange)

Table 28: VaR statistics (medium-sized banks only)
EU Statistics for VaR

		Other stats								Percentiles							
	Port.10	Min	Max	Ave.	STDev	STDev_trunc	$\begin{array}{\|c\|} \hline \text { MAD (median } \\ \text { absolute } \\ \text { deviation) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Coefficient of } \\ \text { variation } \\ \text { (STDev/Mean) } \\ \hline \end{array}$	Num obs.	5th	10th	25th	50 th (Median)	75th	90th	95th	Interquantile range
Equity	1	2,081,748	3,206,116	2,659,786	381,177			14\%	22	2,106,493	2,156,980	2,238,128	2,752,425	2,995,397	3,104,841	3,129,183	14\%
	2	1,909,923	2,845,713	2,364,727	316,185			13\%	19	1,915,249	1,979,120	2,085,002	2,280,357	2,677,014	2,703,144	2,722,632	12%
	3	10,670	27,263	20,820	3,991			19\%	19	15,260	16,628	19,259	20,447	24,096	25,129	26,480	11%
	${ }_{5}^{4}$	210	1,693	794	423			53\%	18	283	337	392	738	1,156	1,254	1,336	49\%
	5	730,787,866	973,360.882	848,57,540	71,612,204			8\%	20	735,196,011	760,759,249	776,161,082	864,153,529	902,750,644	911,677,828	934,286,231	${ }^{8 \%}$
	${ }_{7}^{6}$	17,854 3,862	46,308 27986	34,830	9,064			26\%	19	18,078	20,553	28,853	37,871	40,939	45,068	45,412	17\%
	${ }_{8}$	1,882 60,353	27,986 125,490	${ }_{9}^{11,7,10}$	5,670 23,849			48\%	17 18	5,117 60,931	6,027 61,719	9,066 68,913	10,707 98,219	13,280 115,03	17,713 119,90	20,014 122,548	19\%
	9	36,574	89,738	63,298	14,456			23\%	19	39,620	48,722	55,172	61,151	70,266	82,139	86,807	12\%
	10	244,093	331,241	284,697	23,939			8\%	18	252,766	263,411	269,622	276,285	298,132	317,799	328,127	5\%
Interst Rote	${ }^{11}$	64,021	78,21	70,576	4,334			6\%	23	64,386	64,936	67,535	70,279	73,445	77,353	78,112	4\%
	12	32,826	54,016	42,309	6,186			15\%	25	33,605	34,186	37,693	41,877	46,843	50,171	51,489	11\%
	${ }^{13}$	130,121	178,574	151,806	12,979			9\%	24	135,088	135,233	140,661	154,006	160,174	166,980	168,209	6\%
	14	22,285	32,700	27,745	2,699			10\%	26	23,488	24,386	26,165	27,841	29,029	31,761	32,187	5\%
	15	11,177	26,443	16,441	4,901			30\%	${ }^{9}$	11,397	11,618	14,129	15,658	16,712	22,901	24,672	8\%
	16	90,921	119,751	103,326	6,732			7\%	24	94,957	96,749	98,748	102,578	108,641	110,215	114,270	5\%
	17	153,246	362,697	248,882	53,296			21\%	22	155,349	183,258	217,251	257,57	267,32	288,204	358,025	10\%
	18 19 18	123,379	472,329	300,752	${ }^{98,716}$			33\%	${ }_{21}^{21}$	${ }^{165,983}$	189,885	${ }^{235,716}$	280,375	345,329	${ }^{438,667}$	453,468	${ }^{19 \%}$
	19 20	126,580 3,105	167,912 6,996	150,277 4,499	12,424 1,043			8\% ${ }^{83 \%}$	25 26	130,448 3,266	131,945 3,323	143,239 3,562	152,853 4,267	160,537 5,220	163,464 5,865	165,082 6,04	${ }^{6 \%}$
	21	243,192	323,341	287,928	22,231			8%	26	253,246	265,199	272,464	285,814	308,922	315,689	316,482	6%
	${ }^{22}$	41,516	${ }^{63,601}$	50,764	5,992			12\%	25	43,408	43,698	46,491	49,412	54,904	59,208	59,692	8%
	${ }^{23}$	142,629	201,294	169,295	18,414			11\%	23	145,922	149,134	152,172	165,69	182,95	196,603	198,557	9\%
	24	42,451	329,688	172,377	86,767			50\%	17	48,505	72,251	106,237	176,750	202,815	286,55	313,295	31%
	${ }^{25}$	12,685	109,079	45,742	24,035			53\%	25	20,942	25,677	29,856	40,586	52,282	82,156	95,507	27\%
	26	227,460	547,837	395,750	88,172			22\%	21	265,314	278,725	355,128	377,186	466,998	521,795	546,762	14\%
${ }_{\text {Fx }}$	${ }^{27}$	388,925	588,161	470,794	50,161			11\%	24	404,782	419,677	435,666	456,759	503,834	538,552	549,352	\%
	${ }^{28}$	7,126	22,595	${ }^{11,862}$	3,298			28\%	20	${ }^{8,372}$	8,602	10,298	${ }^{11,200}$	13,235	14,179	15,532	12%
	29 30 30	${ }^{61,605}$	148,573 370,393	98,912	$\begin{array}{r}26,360 \\ \hline 3,005\end{array}$			27\%	${ }^{21}$	63,079	66,074	81,317	87,630	114,537	${ }^{136,271}$	${ }^{138,968}$	${ }^{17 \%}$
	30 31 1	256,067	370,393 337761	314,224	${ }^{31,005}$			10\%	22	282,351	${ }^{284,326}$	293,199	304,887	336,579	${ }^{362,395}$	369,578 33547	7\%
	32 32	244,661 14,221	337,761 188,211	286,089 42,122	29,454 56,698			10\%	17 19	251,294 15,55	254,339 15,710	262,398 16,49	279,566 17063	299,950 23,011	334,632 155,973	335,547	76\%
Commodity	${ }^{33}$	3,512	14,224	9,156	3,675			40\%	${ }^{9}$	4,200	4,889	6,555	9,684	10,864	14,057	14,140	25\%
	34	220,882	328,788	272,297	32,731			12\%	9	233,140	245,399	251,551	270,640	296,736	306,550	317,69	8%
	35	211,155	378,924	299,182	55,716			19\%	9	219,343	227,531	270,764	299,099	333,085	365,230	372,077	10\%
Credit Spread	${ }^{36}$	12,745	22,562	17,835	3,448			19\%	16	12,848	12,943	15,354	17,943	20,747	21,993	22,169	15\%
	${ }^{37}$	11,990	23,048	18,081	3,387			19\%	${ }^{12}$	12,743	13,546	15,962	18,813	19,681	22,530	22,912	10\%
	38 30 30	2,181	4,542	${ }^{3,450}$	815			24\%	${ }^{14}$	2,300	2,498	2,861	3,268	4,298	4,450	4,497	20\%
	39	6,926	13,379	10,032	1,549			15\%	14	8,034	${ }^{8,683}$	9,067	10,148	10,590	11,610	12,461	8%
	40	3,367	6,529	4,679	960			21\%	${ }^{14}$	3,382	${ }^{3,403}$	4,081	4,652	5,324	5,600	5,960	13\%
	${ }^{41}$	2,707	11,644	7,437 1,68	2,282			${ }^{31 \%}$	${ }^{13}$	4,433	5,617	5,973	7,531	${ }^{8,786}$	9,859	10,657	19\%
	${ }^{42}$	9,704	${ }^{40,738}$	${ }^{21,168}$	${ }^{10,645}$			50\%	${ }^{12}$	11,228	12,490	14,391	16,483	25,182	38,639	39,923	27\%
	43	9,222	46,279	18,547	10,036			54\%	15	10,041	10,790	12,570	14,156	20,524	30,489	${ }^{36,429}$	24\%
	${ }_{45}^{44}$	4,784 1 1,595	8,273 8,526	6,615 4,624	1,181 2,183			18\%		4,966 1885	5,030 2	5,846 3,660	${ }_{6}^{6,571}$	7,354 5 5	8,244 7933	8,872	${ }^{11 \%}$
	$\begin{aligned} & 45 \\ & 46 \end{aligned}$	1,595 3,707	8,526 13,939	4,624 7,096	2,183 3,000			47\%	13 16	1,885 3,931	2,130 4,094	3,660 4,810	4,390 6,365	5,291 9,983	7,933 10,428	8,341 11,309	18\%
	47	1,438	5,477	2,808	1,373			49\%	14	1,562	1,635	1,746	2,246	3,665	4,868	5,166	35\%
	${ }_{4}^{48}$	5,856	12,492	9,417	2,152			23\%	15	5,911	6,511	7,621	9,891	10,684	12,020	12,247	17\%
	49	2,421	${ }^{8,746}$	4,771	2,039			43\%	16	2,839	3,096	3,266	3,618	6,731	7,407	7,884	35\%
	50 51 51	${ }^{111,671}$	37,596	${ }^{19,177}$	7,274			38\%	${ }^{16}$	11,702	12,330	14,045	17,370	${ }^{21,337}$	28,689	31,032	${ }^{21 \%}$
	51 52 5	${ }^{36,745}$	88,892	${ }^{61,408}$	17,278 54,099			28% 45%	12 11	38,546	40,205	50,189	60,661	73,553	${ }^{84,723}$	87,194	19\%
	53	105,543	338,088	180,509	66,946			37\%	12	10,485	113.037	133,054	167753	214,791	243.655	286,938	$\xrightarrow{28 \%}$
CTP	54	962	4,997	3,143	2,037			65\%	${ }^{3}$	1,213	1,464	2,217	3,471	4,234	4,692	4,844	44 21 70
	55	22,705	35,669	29,187	9,167			31\%	${ }^{2}$	23,353	24,001	25,946	29,187	32,428	34,373	35,021	
	56	186,900	282,132	234,516	67,339			29\%	2	191,662	196,423	210,708	234,516	258,324	272,609	277,370	
$\overline{\text { Alu-N no.CTP }}$	${ }^{57}$	1,201,785	1,694,730	1,459,482	140,448			10\%	10	1,264,088	1,326,391	1,362,655	1,472,192	1,545,454	1,584,937	1,639,834	
Equiry Cumulotive	${ }_{58}$	950,141	1,466,377	1,232,208	143,931			12\%	14	1,034,930	1,080,867	1,173,663	1,230,907	1,314,115	1,425,964	1,453,746	6\%
1 R cumulative	59	275,264	564,481	380,673	84,873			22\%	18	295,419	301,948	314,565	364,268	402,009	501,403	544,947	12\%
ex Cumulative	${ }_{60}$	448,969	827,112	617,694	100,313			16\%	18	490,293	499,999	545,747	615,607	696,275	727,216	769,130	12\%
Commodity cumulative	${ }_{61} 61$	222,801	331,312	271,974	${ }^{33,406}$			12\%	${ }^{9}$	232,763	242,724	250,357	271,490	296,621	307,507	319,410	8\%
cs comulative	${ }_{6}^{62}$	10,392	27,527	17,733	5,297 5 5685			30\%	${ }^{13}$	10,697	11,547	$\begin{array}{r}15,060 \\ \hline 19072\end{array}$	15.919	${ }^{21,646}$	24,672	${ }^{26,021}$	18\%
CTP Cumulative	63	169,967	250,386	210,177	56,865			27\%		173,988	178,009	190,072	210,177	230,281	242,34	246,365	10\%

Figure 22: VaR ratio with median (focus on medium-sized banks)
VaR: all portfolios (exc. aggregated)
(ratio with the median - Medium banks in orange)

Table 29: VaR statistics (large banks only)
EU Statistics for VaR

Figure 23: VaR ratio with median (focus on large banks)
VaR: all portfolios (exc. aggregated)
(ratio with the median - Large banks in orange)

Table 30: VaR statistics (small TB banks only)

EU Statistics for VaR

Table 31: VaR statistics (medium TB banks only)

EU Statistics for VaR

Table 32：VaR statistics（large TB banks only）

EU Statistics for VaR

											Vacme						cemenemesme	
	0ot．0．	ma	\pm	me	sow	mem	mmose	sm	\％om	2 zin	smmam	7 zm	sm	smin	－	spoweme	mesm	
san																cose		
				$\underbrace{8595858}$	$\underbrace{8593280} 8$	，									${ }^{22}$			
			$\begin{array}{r} 40,922 \\ 18,377 \\ 118,023 \end{array}$		$\begin{array}{r} 8,737 \\ 4,445 \\ 19,491 \end{array}$										cosm			cose
		${ }_{55784}$		cien	，			Stise	Stise	，	（ex		（19，9					
meremer					速	\％		$\underbrace{\substack{\text { ana }}}_{\substack{6,382}}$			cismo				col	cose	cose	，
	$\begin{aligned} & 18 \\ & 14 \\ & \hline 4 \end{aligned}$		$\underbrace{\substack{12858 \\ 32700}}$						${ }_{\substack{13539 \\ 2539}}^{1}$									cos
	，	cince	（20，5						${ }_{\substack{1258 \\ 9,205}}$		cis	cinc		cin		cos	cire	
	\％			，		，	．	边		${ }^{227236}$	coit		cose		${ }_{258}^{28}$			
	20	cince	，	${ }_{\text {a }}^{4}$			${ }^{2}$	， 3 Sts	cism	${ }_{\substack{3 \\ 2302 \\ 2705}}$	，	cise	cise	，5，	5	，	，	，
	${ }^{3}$		cos	cose	，	，		cosis	cosis	cin		cos		cose	5			
					cos				cos	cose								cose
			${ }_{\text {stas }}$	${ }^{\text {a23s8 }}$				26838	${ }^{33583}$	3515909	${ }_{31888}$	satas	s97837	St， 3^{3}				，
${ }^{\text {x }}$		cis		（12，				，				，	coin		碞		，	cit
Comaty								${ }^{\text {a，011 }}$	5，06		\％，19	${ }^{6218}$	${ }^{6,200}$		${ }^{\text {cose }}$	4，98		${ }_{\text {a }}$
	${ }_{3}^{36}$			seaso		${ }^{122}$										（tasp		$\substack{33,2,5 \\ \text { dizss }}$
cmasmax												${ }_{\substack{19,290}}^{\substack{1920}}$	${ }_{\substack{\text { 2，} \\ \text { 2，} 1,9 \\ \hline}}$	$2{ }^{209}$	${ }_{\substack{20 \\ 1 \times 2}}^{2}$		cose	
	${ }_{8}^{80}$	$\underset{\substack{1398 \\ 6,90}}{\substack{\text { a }}}$		（inco	｜in	$\substack{358 \\ 2 \times 1}$		$\underset{\substack{12,20 \\ 1,04}}{ }$	$\underset{1288}{2120}$			${ }_{\text {cose }}^{\text {a }}$	${ }^{414585}$	${ }_{1}^{4,485}$	$\underset{\substack{208 \\ 100}}{20}$	cos		（4，
	\％	$\underset{\substack{3,03 \\ 6,0}}{\text { and }}$	${ }_{\text {c }}^{659}$	（539	$\xrightarrow{1235}$	$\xrightarrow{238}$		${ }_{3}^{3095}$		${ }_{\substack{3,28 \\ 3,255}}$	${ }_{\text {a }}$	${ }_{\text {S }}^{52,5}$	Ss．as	（1，2）	${ }^{188}$	，	${ }_{2}^{23,5}$	（tam
	\％		20， 21	，		15		，	退	${ }^{17329}$		，	20，	${ }^{20,38}$	${ }^{6}$	，	约	（2，
	${ }_{\text {a }}^{4}$		$\underbrace{}_{\substack{8,23 \\ 8,83}}$			${ }_{658}^{175}$						$\substack{\text { cese } \\ \text { gese }}$	$\underbrace{}_{\substack{8,15 \\ 9,78}}$	${ }_{\substack{82, 8,2 m}}^{\substack{\text { a }}}$	${ }_{68}$	cin	（tar	
	\％				$\underset{\substack{\text { 2，} 2,58 \\ 1,38}}{ }$			$\underbrace{}_{\substack{3290 \\ 1,90}}$		$\underset{\substack{4.458 \\ 3202}}{4}$	cost	${ }_{\text {8，}}^{8.45}$	$\substack{9.95 \\ \hline 985}$	cos	${ }^{18}$	隹	${ }_{8}^{8, s s_{0}}$	
	，		$\substack{12,49 \\ 7,56}$	，		$\underbrace{\substack{28}}_{\substack{238 \\ 38}}$		${ }_{\substack{6,35 \\ 3,198}}^{19}$			，	$\underbrace{\substack{\text { con }}}_{\substack{1007 \\ 5602}}$	$\underset{\substack{\text { mits } \\ 7,258}}{ }$	，	${ }^{23}$		cose	cos
				cin	cinc	$\underset{\substack{358 \\ 258}}{ }$		$\underbrace{}_{\substack{11,51 \\ 3,502}}$		$\underbrace{}_{\substack{13,58 \\ \hline 8,38}}$	cincin		$\underset{\substack{2985 \\ 7825}}{ }$	cise	${ }_{\substack{29 \\ 159}}$	（ispas	（200	cose
					cos	¢9x		$\underbrace{\text { ase }}_{\substack{\text { aent } \\ \text { cise }}}$			（2007		coin					
	\％	cosm			，	cix ${ }_{\text {cke }}^{6 \times 8}$				${ }^{12302}$				，	\％x	coilize		
												边						
			cent		cosin	$\underset{\substack{\text { 12x } \\ 10 \times 0}}{ }$						cosisisin		cise	\％	cois	cisize	
			cos					cis	coit	cis			cinem	cos	$\xrightarrow{\text { cos }}$			（tas

Table 33: VaR statistics (same business model - cross-border universal bank)

EU Statistics for VaR

Table 34: VaR statistics (low L3 A\&L banks only)
EU Statistics for VaR

Table 35：VaR statistics（medium L3 A\＆L banks only）

EU Statistics for VaR

											Vacmeme							
	om．	m	\pm	me	sow	mem	mmomb	sm	\％om	23 n	smmemen	7 mm	sm	smin	ceme	Sme	mome	2rsousume
			$\begin{array}{r} \hline 3,130,276 \\ 2,845,713 \\ 28,701 \end{array}$			$\underset{\substack{1,5 \times x \\ 1 \times 2 \times}}{ }$										cosize		
			cese			${ }^{23 \times}$									${ }_{12}$			
					$\begin{array}{r} 3,240 \\ 23,774 \end{array}$	${ }^{238}$			cex		coin							cose
	，			cosem		${ }_{228}$					cis	coich		8728				
					208	${ }^{35}$		$\underbrace{\text { and }}_{\substack{6,32 \\ 33,22}}$	cos					citat	${ }^{\text {a }}$	cosise		，
	$\begin{aligned} & 18 \\ & 14 \\ & \hline 4 \end{aligned}$	$\underset{\substack{\text { 30，212 } \\ 25091}}{\substack{201}}$	$\underbrace{\substack{12858 \\ 32700}}$			$\stackrel{9}{\%}$								ctice				coick
	，			$\underbrace{}_{\substack{1732 \\ 123,304}}$		，358		${ }_{\text {a }}^{112.218} 9$		${ }_{\substack{12,29 \\ 9.956}}$	cis	${ }_{\text {a }}^{123}$	$\underbrace{\substack{\text { a }}}_{\substack{20,43 \\ \text { 10，} 93}}$		${ }^{208}$	cos		
mese	\％			${ }^{20}$			${ }^{10}$			${ }^{202523}$		cos	cos	cose	${ }_{300}$	cose		
	$\begin{gathered} 20 \\ { }_{2 n}^{20} \end{gathered}$	， 3 Sex	，	$\begin{aligned} & 14393) \\ & \hline \end{aligned}$		$\begin{gathered} \substack { 2 \times x \\ \begin{subarray}{c}{680{ 2 \times x \\ \begin{subarray} { c } { 6 8 0 } } \\ { } \\ {\hline} \end{gathered}$		， 3,7	3， 3	cosion	atem		Sex	cos	${ }^{198}$	，	，	，
	${ }_{n}$					cosy	，${ }_{10}^{19}$	cose						cose	${ }^{58}$			
				cos			${ }_{5}^{5}$		cos	cosme	cos			为越，	20	cosit		cose
	${ }_{\substack{28 \\ 28 \\ 28}}$		${ }_{\substack{23,35 \\ 1243}}$				，		${ }_{\substack{2031 \\ 1820}}$		，	${ }_{\substack{1.12595 \\ 1.258}}$	$\underbrace{13,29}_{13}$	， 12.3	${ }_{\substack{128 \\ 108}}^{108}$		cilitize	cos
				${ }_{\substack{31598 \\ 26618}}^{\substack{18}}$			，		ces				cex					
matar	，	\％	2ma	\％eacter	\％es	${ }^{688}$		\％ 408		Ssmb	8，	${ }^{12,265}$	\％	2ma	，	\％	， 14.62	
												${ }^{27293}$						
									${ }_{\substack{12,200}}^{1212}$				2008	2，	${ }_{128}^{218}$	，	cin	
	x_{n}^{8}	\％			$\xrightarrow[\substack{89 \\ 1,99}]{\text { a }}$	$\underset{\substack{20 \times 4 \\ 2004}}{2}$		$\substack{1,98 \\ 698}_{\substack{\text { a }}}$		$\underbrace{2}_{\substack{2581 \\ 882}}$	$\substack{2086 \\ 9,906}$	$\underbrace{\substack{\text { a }}}_{\substack{3,580 \\ \text { Leso }}}$		${ }_{\substack{4 \\ 1828 \\ 18,8}}$	，	，	（1380	
	${ }^{\circ}$	，	cise		込				cincise	$\underbrace{}_{\substack{3,12 \\ 6,102}}$	${ }_{\text {cose }}^{\text {a }}$	cinc	$\substack{\text { s．ex } \\ \text { gese }}$	cos	coss		${ }_{2}^{2,35}$	Stice
	${ }^{2}$	cin				${ }_{48} 8$					（1as）			cose	，	cinco		
emstest	4	，	$\underbrace{\substack{\text { a }}}_{\substack{8.895 \\ \text { Re，}}}$	（tin）	$\xrightarrow{\substack{\text { L，} \\ 2,08 \\ 2,0}}$	${ }_{108}^{108}$					${ }_{\substack{\text { a } \\ 6,38 \\ 6,30}}$			cos		cin	（tar	$\xrightarrow{2,5}$
	${ }_{\text {a }}$	S		$\underset{\substack{1,989 \\ 2,98}}{ }$	$\xrightarrow{\substack{2909 \\ 1,309}}$	$\xrightarrow[\substack{\text { css } \\ 488}]{ }$		${ }_{\substack{3,55 \\ 1,55}}$	${ }_{\substack{4,98 \\ 1,50}}^{4}$	50，		8，30	coin	${ }^{212}$	37	，	${ }_{\text {cse }}^{8.50}$	，
	${ }_{\text {d }}$	（tas	$\substack{12,49 \\ 7,56}$	\％e， 2×1	$\underset{\substack{\text { c，} 1,58 \\ 1,59}}{ }$	$\underbrace{1980}_{108}$					， 930	cise	$\underset{\substack{4558 \\ 685}}{\substack{\text { cse }}}$	， 123	${ }_{10}^{128}$			
	号品			$\underset{\substack{19,94 \\ 6,296}}{\substack{\text { a }}}$	cis				cince		cise	$\underbrace{}_{\substack{2,7,11 \\ \eta, 10}}$	$\underbrace{\substack{\text { a }}}_{\substack{26,58 \\ 8,745}}$		${ }_{20}^{208}$		（120）	
		cis			（int			，						S8，				
	\％	，			，	${ }_{508}^{680}$				${ }_{\text {2 }}^{12,202}$		cosis	${ }_{\text {a }}^{43}$	， 4	${ }_{\text {a }}^{3}$		9，${ }^{2}$	
			cisish						（12，391	边		cose	$\underbrace{3}$					
comen											colin		，	${ }^{1055} 5$				
									${ }^{2023} 24$	20，	Smas	${ }^{313,39}$	\％os9	30938				（3ama
									90832				627，7es					

Table 36: VaR statistics (high L3 A\&L banks only)

EU Statistics for VaR

Table 37: VaR statistics (IR and CS asset classes - only banks with general and specific IR risk approval)

EU Statistics for VaR

		Other stats						Percentiles							
	Port. 10	Min	Max	Ave.	sTDev	$\begin{array}{\|c\|} \hline \text { Coefficient of } \\ \text { variation } \\ \text { (STDev/Mean) } \\ \hline \end{array}$	Num obs.	5th	10th	25th	50 th (Median)	75th	90th	95th	Interquantile range
interst fate	${ }_{11}$	64,332	78,21	71,098	4,323	6\%	26	65,346	65,758	67,996	70,167	74,064	77,684	78,098	4%
	12	27,936	51,757	41,416	6,922	17\%	26	30,052	33,151	36,542	41,708	47,625	50,005	50,210	13\%
	13	118,767	178,574	153,183	13,956	\%	29	135,186	138,448	142,884	155,313	163,172	170,804	175,225	7\%
	14	22,285	32,700	27,797	2,403	9\%	26	23,655	24,819	27,178	27,838	28,825	30,49	32,187	3\%
	15	10,103	31,178	16,432	5,104	31\%	14	11,118	12,010	14,162	16,015	16,767	20,481	25,222	8%
	16	93,828	119,751	104,567	5,838	6\%	25	96,891	97,974	102,384	103,299	109,230	110,170	114,045	3\%
	17	138,867	362,697	252,350	52,295	21\%	25	153,388	180,573	237,623	258,130	266,882	305,785	353,468	6\%
	18	136,877	472,329	307,560	93,051	30\%	25	170,763	204,885	254,443	293,170	358,870	436,104	455,549	17\%
	19	132,157	167,912	199,707	9,905	7\%	27	133,308	136,900	143,665	148,399	156,825	162,604	163,515	
	${ }^{20}$	3,259	6,017	4,272	881	21\%	27	3,292	3,336	3,527	4,016	4,732	5,741	5,873	15\%
	21 22 22	${ }^{261,893}$	323,341 59726	293,966 50765	19,112 5 5	7\%	28	266,806	271,046	276,170	299,129	309,189	315,848	319,950	6\%
	22 23 23	43,070 142,629	59,726 201,294	50,765 170,743	5,345 17179	11\%	26 28	43,908 149.013	45,443 149.560	46,355 154,889	48,905 170,276	56,277 186,696	58,032 192564	59, 338 198.506	10\%
	24	87,072	403,906	221,207	92,275	42\%	26	92,758	111,501	150,577	196,402	270,381	356,837	392,683	28\%
	25	26,621	90,863	44,352	19,111	43\%	28	28,49	28,993	30,568	34,782	51,546	76,321	85,833	26\%
	26	166,144	547,837	376,201	93,484	25\%	24	228,981	245,916	349,360	374,444	404,529	504,299	519,171	7%
Credit Spread	${ }^{36}$	9,872	22,562	17,628	4,137	23\%	25	10,582	12,027	14,103	18,771	21,224	22,262	22,328	20\%
	37	11,990	23,048	17,389	3,563	20\%	23	12,566	13,257	14,490	18,021	19,977	22,371	22,777	16\%
	${ }^{38}$	1,534	4,472	3,072	806	26\%	23	1,866	2,193	2,678	2,966	3,520	4,305	4,392	14\%
	39	6,926	13,249	9,939	1,692	17\%	22	6,951	7,471	9,067	10,104	10,739	11,868	13,185	8\%
	40	3,003	6,529	4,457	945	21\%	23	3,191	3,226	3,548	4,506	5,210	5,477	5,635	19\%
	${ }^{41}$	2,707	11,644	7,092	2,007	28\%	23	3,397	5,617	${ }^{6,033}$	7,266	8,002	9,480	9,964	14\%
	42	9,704	40,738	21,060	8,551	41\%	23	12,490	13,097	16,277	19,314	21,338	37,292	39,165	13\%
	${ }^{43}$	9,222	46,279	16,596	${ }^{8,013}$	48\%	${ }^{26}$	10,307	10,643	12,989	14,143	17,481	25,065	${ }^{31,134}$	15\%
	44	4,784	${ }^{8,696}$	6,572	1,110	17\%	${ }^{26}$	5,028	5,082	5,796	${ }_{6}^{6.571}$	7,071	8,244	${ }^{8,273}$	10\%
	45 46	1,595 2,733	10,255 13,939	5,564 6,357 2,	2,608 2,618	47\%	24 27	2,106 3,796 1	2,287 4,11	3,698 4,501	5,229 5 5476	8,089 7433	9,392 10,325	9,806 10,430	37% 25%
	${ }_{4}^{46}$	2,733 1,340	13,939 5,47	6,357 2,663	2,618 1,261	47\%	${ }_{23}^{27}$	- $\begin{aligned} & \text { 3,496 } \\ & 1,42\end{aligned}$	4,500	4,565	${ }_{\text {5,476 }}$	7,433 3,262	10,325 4,636	10,430 4,964	33\%
	${ }^{48}$	5,668	12,492	9,186	1,971	21\%	26	5,876	6,278	7,574	9,708	10,533	11,449	12,066	16\%
	49	2,421	8,746	4,546	1,867	41\%	23	2,504	3,025	3,337	3,676	5,540	7,520	7,672	25\%
	50	11,671	37,596	19,680	6,995	36\%	24	11,790	12,444	14,116	17,788	23,514	29,564	29,872	25\%
	51	32,646	88,892	58,990	17,084	29\%	22	36,613	37,073	45,397	58,292	72,474	82,771	85,671	23\%
	52	38,414	310,499	120,439	76,319	63\%	21	43,819	46,403	78,799	107,083	136,370	247,517	281,923	27\%
	53	58,488	338,088	166,472	82,248	49\%	23	73,168	74,322	100,740	159,469	220,113	278,784	319,07	37\%
IR Cumulotive	59	265,651	564,481	${ }^{390,519}$	${ }^{84,790}$	${ }^{22 \%}$	25	276,236	290,860	327,361	379,424	437,241	511,116	548,479	14\%
cs cumulative	62	10,392	29,923	17,319	5,282	30\%	23	10,938	11,437	14,454	15,698	20,056	24,672	27,276	16\%

Table 38: VaR statistics (IR and CS asset classes - only banks with general IR risk approval)
EU Statistics for VaR

Table 39: VaR statistics (EQ asset class - only banks with general and specific EQ risk approval)

EU Statistics for VaR

Table 40: VaR statistics (EQ asset class - only banks with general EQ risk approval)
EU Statistics for VaR

		Other stats						Percentiles							
	Port. ID	Min	Max	Ave.	STDev	Coefficient of variation Variation (STDev/Mean)	Num obs.	5th	10th	25th	50th (Median)	75th	90th	95th	Intercuantile range
	1	2,104,118	2,811,041	2,408,790	288,315	12\%	10	2,123,882	2,143,645	2,152,752	2,340,731	2,693,034	2,744,096	2,777,569	11%
	2	1,909,923	2,355,007	2,230,531	144,148	6\%		1,993,479	2,077,035	2,197,769	2,312,119	2,321,696	2,337,241	2,346,124	3%
	3	10,670	26,890	16,660	5,303	32\%	${ }^{8}$	11,416	12,161	12,823	15,616	19,428	21,667	24,278	20\%
	4	143	1,716	941	643	68\%		242	342	581	766	1,495	1,716	1,716	44\%
Equity	${ }^{5}$	727,947,916	948,265,719	835,858,991	91,466,039	${ }^{11 \%}$		728,122,048	728,296,181	748,511,981	886,780,497	895,497,422	921,834,895	935,050,307	9\%
	5 7 7	18,103	45,808	27,67	10,037	36\%	9 4	18,279 5976	18,456 6,522	21,165 8,157	23,525	36,576 15479	40,202	43,005 15479	27% 31%
	8	44,948	15,479 113,825	11,364 83,203	$\begin{array}{r}4,978 \\ \hline 27,366\end{array}$	44\%	7	5,976 50,48	6,522 56,027	8,157 64,279	12,273 77,200	15,49 108,94	15,479 110,896	15,479 112,361	26\%
	9	36,574	79,588	56,395	12,527	22\%	8	39,670	42,766	51,105	58,291	59,420	66,682	73,135	8\%
	10	158,743	290,245	259,469	45,812	18\%	7	188,973	219,204	263,414	274,179	283,143	290,245	290,245	4\%
Equit Cumulative	58	1,241,240	1,391,385	1,341,337	86,886	6\%	${ }^{3}$	1,256,255	1,271,269	1,316,313	1,391,385	1,391,385	1,391,385	1,391,385	-36

Table 41: Stress VaR statistics (2008-2009 stress period only)

EU Statistics for SVaR

		Other stats								Percentiles							$\begin{array}{\|c\|} \hline \text { Interquantile } \\ \text { range } \end{array}$
	Port. 10	Min	Max	Ave.	SToev	Stov_trunc	$\begin{array}{\|c\|} \hline \text { MAD (median } \\ \text { absolute } \\ \text { deviation) } \end{array}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Coefficient of } \\ \text { (sariation } \\ \text { (STDev/Mean) } \end{array} \\ \hline \end{array}$	Num obs:	5th	10th	25th	50th (Median)	75th	90th	95th	
Equily	$\stackrel{1}{2}$	5,678,137	${ }^{8,456,509}$	$7,490,880$	${ }^{731,761}$			10\%	${ }^{21}$	${ }^{6,678,100}$	${ }^{6,736,024}$	7 7,012,906	$7,413,133$	${ }_{8,173,504}$	${ }^{8,442,716}$	${ }^{8,450,366}$	${ }^{8 \%}$
	2	4,992,883	15,75,620	11,215,044	2,994,222			27\%		6,659,151	7,801,996	9,139,771	11,641,776	13,617,070	14,578,602	15,224,667	20\%
	3	15,670	44,779	31,336	9,243			29\%	19	17,385	18,475	25,366	31,959	38,359	43,782	44,147	20\%
	${ }_{5}^{4}$	209	2,624	891	652			73\%	17	381	427	515	648	${ }^{23}$	1,893	2,125	23\%
	${ }_{5}^{4}$	1,860,241,962	3,288,699,322	2,718,992,047	404,445,424			15\%	${ }^{18}$	2,200,099,5880	2,328,093,445	2,404,135,861	2,711,333,579	3,042,181,472	3,234,314,966	3,284,550,671	${ }^{12 \%}$
	${ }_{7}^{6}$	26,704 18,786	94,924 112,863	56,689 49,831	17,777 28,366			31\%	18 15	34,677 19,312	37,531 19,588	43,632 27.841	55,988 45,788	68,412 670.015	75,912 86,125	87,515 99385	${ }_{41 \%}^{22 \%}$
	8	${ }_{62,244}$	120,68 206,30	49,831	28,7665 47,275			57\%	18	19,312 7594	195,787 7878	${ }_{991,120}^{27,1}$	45,788 15,668	-67,015	86,125 184,280	99,385 205,59	31\%
	9	51,570	188,135	124,962	33,503			27\%	20	67,968	89,323	109,721	123,110	146,525	155,551	183,447	
	10	486,431	1,275,453	1.013,908	199,956			20\%	18	573,857	799,291	967,935	1,043,676	1,127,522	1,196,303	1,218,829	${ }_{8 \%}$
Interst Rote	${ }_{12}$	102,131	295,110	216,824	47,568			22\%	27	114,941	150,834	204,011	227,74	247,967	257,223	269,847	10\%
	12	18,112	154,369	${ }_{86,073}$	36,828			43\%	26	23,254	39,702	69,490	86,982	105,290	135,460	151,21	20\%
	13	140,153	464,215	331,702	${ }^{80,617}$			24\%	29	191,514	222,50	293,67	352,116	386,500	430,710	446,513	14\%
	14	${ }^{31,521}$	136,400	87,055	26,327			30\%	29	${ }^{37,028}$	52,973	71,173	87,490	106,590	117,964	121,286	20\%
	15	23,551	149,760	71,346	${ }^{43,173}$			61\%	11	25,226	26,901	30,721	60,680	100,270	115,337	132,549	53\%
	16	90,693	276,954	197,328	48,529			25\%	26	112,613	144,584	158,235	202,817	220,091	256,725	272,259	
	17	204,54	569,977	366,817	102,327			28\%	23	225,251	236,770	295,210	359,557	425,056	491,702	557,781	18\%
	18	179,619	496,968	318,176	${ }^{81,105}$			25\%	23	206,680	212,607	261,309	325,219	375,267	402,787	440,226	18\%
	19 20 20	112,007	${ }^{450,642}$	320,080	${ }_{69,176}$			${ }^{22 \%}$	27	193,065	243,554	293,322	337,004	355,235	380,177	404,577	
	20 21 20	639 387,28	${ }_{857,951}^{47,25}$	15,162 673,37	9,455 102,276			62\% 15%	22 22	2,844 546,635	3,571 565,687	10,791 644,284	14,728 681,107	${ }_{7}^{18,851}$	22,418 820,55	24,174 837,43	27% 5%
	22	32,078	231,111	164,852	59,849			36\%	27	43,218	63,041	147,058	180,400	214,820	223,657	227,993	19\%
	23	199,708	394,565	300,799	57,175			19\%	23	206,325	231,563	257,239	295,609	342,421	375,296	389,538	14\%
	${ }_{26} 2$	113,522	1,051,258	582,005	296,936			51\%	16	204,677	246,492	370,837	545,910	849,777	977,171	1,040,330	39\%
	25	46,006	335,649	170,489	75,650			44\%	25	58,994	73,388	125,010	166,124	208,031	273,420	293,586	
	${ }^{26}$	210,600	901,797	580,359	194,013			33\%	23	233,928	257,361	507,731	604,857	711,106	767,510	854,489	17\%
${ }_{\text {fx }}$	${ }^{27}$	771,218	1,993,455	${ }^{1,422,623}$	291,328			20\%	26	${ }^{1,054,835}$	1,144,262	1,257,808	1,358,471	1,672,025	${ }^{1,775,240}$	1,922,016	14\%
	${ }^{28}$	10,544	${ }^{41,281}$	27,758	10,318			37\%	24	${ }^{11,309}$	12,413	16,935	30,100	36,019	${ }^{39,176}$	39,92	36\%
	29 20 30	${ }^{219,958}$	531,072	399,383	81,439			20\%	25	258,146	312,220	356,008	385,620	457,593	511,013	518,456	12\%
	30 31 31	688,770 820,87	$1,362,190$ $1.455,293$	984,275	206,204			21\%	${ }^{24}$	${ }^{685,775}$	${ }^{704,476}$	759,924	1,071,919	1,138,319	1,168,379	1,239,521	20\%
	${ }^{31}$	820,087	1,455,293	1,120,748	182,337			16\%	25	862,081	902,166	971,943	1,166,365	1,277,546	1,342,177	1,374,642	14\%
	32	74,876	747,800	165,197	147,217			89\%	20	89,743	96,283	114,317	127,814	146,349	175,976	364,354	12\%
Commodty	${ }^{33}$	${ }^{10,563}$	44,302	26,555	${ }^{9,730}$			${ }^{37 \%}$	${ }^{13}$	${ }^{14,563}$	${ }^{17,490}$	19,042	${ }^{23,831}$	${ }^{34,408}$	${ }^{38,315}$	40,925	29\%
	${ }^{34}$	343,950	568,199	448,241	68,742			15\%	${ }^{13}$	366,841	384,914	396,975	438,633	491,795	554,838	567,32	11\%
	${ }^{35}$	762,601	1,287,124	1,080,308	155,713			14\%	14	839,959	886,539	1,025,422	1,070,781	1,199,556	1,267,488	1,277,342	${ }^{8}$
credit spread	${ }^{36}$	7,618	58,664	23,538	11,663			50\%	15	12,216	14,704	18,162	20,977	24,861	32,663	${ }^{41,878}$	16\%
	${ }^{37}$	${ }^{36,321}$	${ }^{181,375}$	80,983 15784	${ }^{46,827}$			58\%	${ }^{13}$	36,609	37,739	50,275	${ }^{80,40}$	87,998	${ }^{155,544}$	${ }^{176,081}$	27\%
	${ }^{38}$	${ }^{6,426}$	${ }^{22,833}$	15.784	5,784			37%	${ }^{13}$	7.000	7,531	9,703	18,437	19,693	20,685	21,552	34\%
	${ }^{39}$	13,991	78,963	39,790	19,317			49\%	${ }^{14}$	18,814	22,682	26,658	36,034	44,742	70,738	78,124	25\%
	40	${ }^{9,215}$	38,000	20,377	10,054			49\%	11	${ }^{9,687}$	10,158	12,473	18,991	28,241	32,444	35,222	39\%
	${ }^{42}$	${ }^{11,218}$	52,137	33,793	14,798			44\%	${ }^{14}$	11,455	12,941	18,806	39,835	43,722	48,676	51,015	40\%
	${ }^{42}$	30,960	115,078	73,044	32,942			45\%	11	35,632	40,304	44,011	59,511	105,776	109,460	112,269	41%
	${ }^{43}$	24,990	107,130	67,600	25,460			38\%	15	33,265	37,284	51,614	66,475	86,149	101,926	106,017	25\%
	${ }_{4}^{44}$	${ }^{12,000}$	${ }^{41,719}$	${ }^{25,493}$	10,623			${ }^{42 \%}$	13	12,458	13,158	${ }^{17,428}$	24,872	34,093	39,140	40,249	${ }^{32 \%}$
	${ }_{4}^{45}$	12,306 9,994	38,328 37,861	24,247 19,823	8,823 7,583			36% 38%	13 13	12,478 10,677	12,857 12,496	16,327 16,757	26,608 17,781	30,635 20,381	34,347 29,846	36,056 34,014	30% 10%
	${ }_{47}$	5,859	18,485	9,292	3,418			37\%	12	6,442	6,921	7,466	8,444	9,308	12,675	15,477	11\%
	${ }^{48}$	12,764	54,105	34,022	13,629			40\%	14	12,858	15,926	24,207	34,074	43,383	51,993	52,760	28\%
	${ }^{49}$	${ }_{6,394}$	24,485	13,315	5,900			44\%	15	7,538	8,137	8,371	12,049	15,674	22,816	23,677	30\%
	50	15,668	36,874	27,336	5,667			21\%	15	16,750	19,606	24,608	28,535	30,468	32,559	33,558	11\%
	51	87,563	391,206	211,635	82,624			39\%	10	111,593	135,623	168,461	201,59	250,328	269,541	330,374	20\%
	52	102,860	824,581	497843	216,366			43\%	13	189,718	258,751	384,019	477,977	629,238	769,046	797,74	24\%
	53	162,544	750,312	546,478	181,207			33\%	12	289,180	394,429	464,790	504,868	712,501	747,648	749,232	21\%
CTP	54	1,924	17,752	${ }^{9,838}$	11,192			114\%		2,715	${ }^{3,507}$	5,881	9,838	13,795	16,169	16,961	40\%
	${ }_{5}^{55}$	44,280	44,280	44,280	\#olv/0!			\#olvo!		44,280	44,280	44,280	44,280	44,280	44,280	44,280	\%\%
	$\frac{56}{57}$	753,735	${ }^{753,735}$	${ }^{753,735}$	\#0170!			\#olvo!		753,775	753,735	753,735	753,735	753,735	735,735	753,735	${ }^{0 \%}$
	58	$5,088,498$ $4,619,215$	$7,790,838$ $6,271,099$	¢ $\begin{aligned} & \text { 6,543,155 } \\ & 5,630,07\end{aligned}$	895,236 460,54			$\begin{array}{r}14 \% \\ 8 \% \\ \hline 8\end{array}$	12	5,167,579 $4.888,505$	$5,247,750$ $4,993,059$	5,886,392 $5,455,932$	6,767,497 $5,793,906$	$7,112,065$ $5,902,425$	$7,361,908$ $6,095,502$	$7,558,791$ $6,210,684$	-9\%
R cumulaive	59	291,685	809,653	530,411	143,158			27\%	21	302,348	318,971	421,746	548,184	62,493	696,325	733,890	19\%
ex cumulative	60	1,788,964	3,079,300	2,559,677	352,441			14\%	22	2,020,566	2,067,086	2,327,393	2,588,491	2,884,104	2,952,902	3,028,891	10\%
modity cumulative	${ }_{61}^{61}$	344,32	575,046	442,058	68,331			15\%	13	371,049	389,461	394,089	415,794	465,177	548,910	566,594	8%
cs cumulative	62	24,990	101,072	65,505	22,733				${ }^{13}$	32,229	38,681	52,025	65,592	72,935	${ }^{94,807}$	97,684	17\%
CTP Cumulave	${ }^{63}$	1,059,709	1,059,709	1,059,709	\#olv/0!			\#oiv/0!		1,059,709	1,059,709	1,059,709	1,059,709	1,059,709	1,059,709	1,059,709	0%

Table 42: PV statistics

EU Statistics for PV

					Main sta	tistics					Percentiles		
	Port. ID	Min	Max	Ave	STDev	STDev_trunc ${ }^{1}$	MAD (median absolute deviation)	Coefficient of variation (STDev/Ave)	Num obs. ${ }^{3}$	25th	50th (Median)	75th	Interquanti le range
Equity	1	34,719,924	38,119,714	36,548,211	540,554	11,162,286	8,700	2%	31	36,431,000	36,431,486	36,463,416	0\%
	2	-31,804,002	-28,605,845	-30,246,360	603,531	9,743,864	62,905	2\%	29	-30,133,278	-30,076,236	-30,021,066	0\%
	3	-40,144	-35,432	-38,097	965	1,501	305	3\%	29	-38,550	-38,231	-37,988	1\%
	4	3,154	3,909	3,450	220	253	133	6\%	29	3,267	3,410	3,598	5\%
	5	-11,938,244,471	-11,630,403,454	$-11,693,972,380$	62,497,781	3,607,325,715	18,349,013	1\%	29	-11,697,799,988	-11,677,500,000	$-11,662,359,679$	0\%
	${ }^{6}$	-55,120	-39,554	-47,975	3,204	11,702	1,855	7\%	28	-49,850	$-48,534$	-46,073	4\%
	7	1,046,305	1,082,159	1,067,872	9,292	11,631	7,006	1\%	25	1,061,069	1,068,429	1,075,054	1\%
	8	136,037	184,671	158,418	10,784	14,591	5,110	7\%	29	153,905	156,839	163,108	3\%
	9	688,578	710,763	699,203	4,439	9,161	1,154	1\%	32	698,391	699,838	700,600	0\%
	10	-2,505,172	-22,152	-1,904,269	683,247	3,774,962	18,207	36\%	31	-2,171,191	-2,164,120	$-2,133,141$	1%
interest Rate	11	-79,822	-70,270	-75,421	2,227	2,772	1,473	3\%	42	-76,586	-74,934	-73,892	2%
	12	-39,632	-36,040	-37,502	979	1,868	744	3%	40	-38,148	-37,470	-36,592	2\%
	13	62,662	93,112	77,915	7,361	9,552	4,729	9\%	43	73,186	77,710	82,660	6\%
	14	34,503	44,546	40,736	1,981	3,548	590	5\%	42	40,400	41,342	41,854	2\%
	15	1,044,194	1,140,937	1,091,637	31,797	37,100	27,951	3\%	18	1,064,734	1,097,302	1,118,071	2\%
	16	5,127,090	5,180,221	5,162,431	7,201	34,598	1,353	0\%	39	5,160,907	5,161,821	5,164,170	0\%
	17	10,618,800	10,931,508	10,816,447	104,003	137,128	4,336	1\%	35	10,746,065	10,875,126	10,879,521	1%
	18	2,082,940	2,392,705	2,266,664	106,204	135,407	3,826	5\%	35	2,181,498	2,336,986	2,340,570	4\%
	19	42,784	59,918	51,295	4,476	4,855	3,298	9\%	43	48,089	51,000	54,755	6\%
	20	-19,659	-7,899	-14,194	2,130	4,837	475	15\%	39	-14,508	-13,965	-13,477	4\%
	21	174,715	199,355	186,644	5,713	6,716	2,841	3\%	42	183,501	185,933	190,282	2\%
	22	-115,922	-110,308	-113,000	1,876	2,725	1,718	2\%	38	-114,819	-112,579	-111,232	2\%
	23 24 24	7,293,445	7,563,054	7,428,106	37,424	135,243	1,895	1\%	42	7,428,514	7,431,579	7,432,807	0\%
	24	257,895	740,614	459,117	111,852	179,072	77,617	24\%	30	382,230	434,454	530,285	16\%
	25	-10,307,217	-10,275,195	-10,293,894	7,960	19,942	4,279	0\%	38	-10,298,401	-10,294,205	-10,290,401	0\%
	26	19,821,327	20,162,804	20,021,915	108,381	142,443	5,173	1\%	35	19,911,090	20,083,909	20,087,777	0\%
FX	27	484,617	565,494	526,570	15,825	33,848	4,473	3\%	35	520,913	528,610	530,832	1%
	28	828,950	919,590	910,139	16,101	314,907	1,454	2\%	32	911,740	912,972	915,083	0\%
	29	895,858	908,300	903,261	3,036	4,432	1,736	0\%	34	901,853	902,951	905,434	0\%
	30	859,969	882,464	871,535	6,196	8,701	4,087	1\%	34	865,999	872,648	876,210	1\%
	31	-956,649	-929,633	-943,017	6,504	8,214	3,958	1\%	33	$-947,826$	-942,466	-940,506	0\%
	32	-27,228	152,065	55,845	42,638	52,081	15,150	76\%	33	43,922	52,134	66,206	20\%
Commodity	33	$-7,093$	4,242	-1,472	3,014	3,014	1,254	205\%	17	-2,503	$-1,256$	7	100\%
	34	32,736	50,885	41,789	5,746	6,421	1,120	14\%	14	35,725	44,609	45,027	12\%
	35	110,184	152,022	131,692	10,268	22,140	5,340	8\%	14	126,296	134,236	136,197	4%
Credit Spread	${ }^{36}$	3,170	5,739	4,469	625	812	237	14\%	23	4,384	4,520	4,756	4%
	37	-13,299	-10,215	-11,055	861	1,383	184	8\%	20	-11,231	$-10,748$	-10,541	3\%
	38	9,518	12,960	10,031	692	2,164	61	7\%	21	9,848	9,912	9,943	\%\%
	39	18,338	20,303	19,494	479	674	245	3\%	21	19,326	19,634	19,739	1\%
	40	3,329	4,931	3,965	329	1,634	43	8\%	21	3,851	3,918	3,944	1\%
	41	45,110	46,554	46,137	416	644	224	1\%	23	45,877	46,148	46,482	1\%
	42	1,125,587	1,144,079	1,135,732	3,554	7,751	1,513	0\%	21	1,134,388	1,135,000	1,137,610	\%
	43	3,134,295	3,153,203	3,147,865	4,837	11,949	1,347	0\%	21	3,145,384	3,149,772	3,150,762	\%\%
	44	22,517	24,958	23,878	513	765	245	2\%	25	23,721	23,969	24,080	1\%
	45	991,443	1,003,654	998,937	3,543	7,889	1,822	0\%	21	996,625	999,828	1,001,389	0\%
	46	1,032,993	1,053,331	1,048,702	6,291	10,231	610	1\%	25	1,048,862	1,051,841	1,052,145	0\%
	47	33,814	35,407	34,685	317	466	166	1\%	23	34,471	34,656	34,832	1\%
	48	6,616	11,789	10,063	1,179	2,923	618	12\%	25	9,718	10,596	10,806	5\%
	49	-10,767	-9,388	-10,249	387	2,503	120	4\%	23	-10,480	-10,430	-10,106	2\%
	50	1,156,942	1,193,570	1,189,074	8,343	32,376	464	1\%	25	1,190,921	1,192,143	1,192,529	0\%
	51	5,224,968	5,350,906	5,311,266	30,060	51,142	6,033	1\%	22	5,308,539	5,317,156	5,323,175	0\%
	52	5,363,404	5,669,826	5,465,398	83,015	140,799	62,873	2\%	21	5,406,716	5,429,206	5,516,325	1\%
	53	10,620,829	11,011,008	10,781,184	97,857	179,424	61,392	1\%	20	10,708,803	10,753,799	10,838,600	1\%
Correlation Troding	54 58	149,715	173,734	163,997	10,280	19,966	4,728	6\%		156,997	164,279	170,997	4%
	55	71,898	111,330	88,055	20,657	20,657	9,038	24\%	3	71,898	80,936	111,330	22\%
	56	16,207,952	16,306,076	16,241,816	55,678	55,678	3,468	0\%	3	16,207,952	16,211,420	16,306,076	0\%
ALL-IN no-CTP ***	57	9,706,138	15,308,988	14,432,075	1,365,854	10,877,643	249,708	10\%	16	14,168,843	14,814,243	15,132,655	3%
Equity Cumulative **	58	6,994,553	9,125,875	8,036,083	353,783	1,931,959	43,742	4\%	22	8,041,560	8,048,098	$8,122,353$	0\%
1 R Cumulative ***	59	1,657,719	2,462,921	2,292,959	176,375	393,597	19,294	8\%	35	2,168,195	2,406,953	2,414,556	5\%
FX Cumulative **	60	531,753	1,718,544	1,303,572	354,638	501,441	57,015	27\%	30	1,364,215	1,402,545	1,478,206	4\%
Commodity Cumulative "*	61	23,789	44,783	38,779	6,491	17,047	4,361	17\%	13	35,953	39,097	44,103	10\%
CS Cumulative **	62	3,175,638	3,209,840	3,203,071	8,094	15,935	1,584	0\%	18	3,198,929	3,206,175	3,207,347	0\%
CTP Cumulative -*	63	14,813,890	14,875,601	14,847,183	31,143	31,143	23,543	0\%	,	14,813,890	14,852,058	14,875,601	0\%

${ }_{2}^{1}$ STDev trunc is the standard deviation computed excluding values below the 5 th and above the 95th percentile
Refers the number of banks included in the computation of the statistics
(
the computation of the benchmarks for that particular aggregate portfolio.

Table 43: IRC - modelling choice: source of LGD - market convention

EU Statistics for IRC

Table 44: IRC - modelling choice: source of LGD - non-market convention

EU Statistics for IRC

Table 45: IRC - modelling choice: source of LGD - 1-2 modelling factors

EU Statistics for IRC

		Other stats						Percenties							$\begin{gathered} \text { Interquantile } \\ \text { range } \end{gathered}$		Extreme Values range (full Sample)	
	Port. ID	Min	Max	ave.	sto	$\begin{array}{\|c\|} \hline \text { Coefficient of } \\ \text { variation } \\ \text { (STDev/Mean) } \end{array}$	Num obs.	5th	10th	25 th	soth (Median)	75th	goth	95th		stoev_tunc'	-2:stoev_tunc	+2:stevy trune
Equity																		
intest fate	$\begin{aligned} & 11 \\ & \hline 12 \\ & 13 \\ & 13 \\ & 14 \end{aligned}$																	
	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 17 \\ & 18 \end{aligned}$	$\begin{array}{r} 73,418 \\ 0 \\ 120,037 \\ 1,905,673 \end{array}$	$\begin{array}{r} 344,836 \\ 951,181 \\ 4,071,968 \\ 5,445,837 \end{array}$		$\begin{gathered} 105,238 \\ 25,1,801 \\ { }_{2}^{1,23,30,076} \\ 1,392,036 \end{gathered}$	$\begin{gathered} 478 \\ 108 \\ 528 \\ 528 \\ 18 \end{gathered}$	$\begin{aligned} & 6 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$			$\begin{array}{r} 165,889 \\ 121,477 \\ 1,394,271 \\ 2,607,884 \end{array}$		$\begin{aligned} & 307,887 \\ & \text { 228,314 } \\ & \text { 2, } 2,76,146 \\ & 4,46,0,055 \end{aligned}$	$\begin{array}{r} 340,428 \\ 554, \\ 3,595 \\ 3,89632 \\ 5,268,280 \end{array}$			$\begin{array}{r} 92,915 \\ 410,04 \\ 1,169,924 \\ 1,612,903 \end{array}$	$\begin{array}{r} 30,451 \\ -5045154 \\ -30,56 \\ 339,514 \\ 23,814 \end{array}$	
	$\begin{aligned} & 19 \\ & 20 \\ & 21 \\ & 22 \end{aligned}$																	
	$\begin{aligned} & 23 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$	$\begin{array}{r} 0 \\ 64,540 \end{array}$	$\begin{aligned} & 2,4,4,740 \\ & 5,43,420 \end{aligned}$	$\begin{gathered} 653,358 \\ 2,806,386 \end{gathered}$	$\begin{gathered} 626,990 \\ 1,609897 \end{gathered}$	$\begin{aligned} & 96 \% \\ & 578 \end{aligned}$	${ }_{15}^{16}$	$\begin{gathered} 98,638 \\ 616,168 \end{gathered}$	$\begin{aligned} & 131,517 \\ & 950,816 \end{aligned}$	$\begin{gathered} 301,558 \\ 1,700,143 \end{gathered}$	$\begin{gathered} 468,936 \\ 2,458,451 \end{gathered}$	$\begin{array}{r} 760,421 \\ 4,278,607 \end{array}$	$\begin{aligned} & 1,317,832 \\ & 4,861,400 \end{aligned}$	$\begin{aligned} & 1,632,45 \\ & 5,173,012 \\ & 5 \end{aligned}$	$\left.\begin{aligned} & 438 \\ & 438 \end{aligned} \right\rvert\,$	$1,106,207$ $1,699,777$	$\begin{gathered} 1,655,109 \\ -217,763 \end{gathered}$	$\begin{aligned} & 2,74,717 \\ & 6,381,225 \end{aligned}$
	${ }_{26}^{26}$	1,A18,315	5,736,849	3,85,486	1,435,884	39\%	15	1,47,557	1,664,402	3,031,871	3,675,535	4,884,993	5.642,A60	5,700,371	218	1,93, 605	-191,676	7,542,745
${ }_{\text {Ex }}$	27 28 28 29 30 31 32 32																	
Commastiy	$\begin{array}{r} 33 \\ 34 \\ 34 \\ \hline \end{array}$																	
Credit spread	36 36 37 38 39 40 41 42 43 48 45 46 46 47 48 18 50 51 52 53 58														50% 21% 32% 39% 19% 13% 9% 23% 27% 65% 91% 54% 75% 39% 80% 80% 50%			
CTP	$\begin{aligned} & \mathbf{5 4} \\ & 55 \\ & 56 \\ & \hline \end{aligned}$																	
		1,560,606	5,46,901	3,75, 280	1,513,120	40\%		1,722,102	1,883,599	2,766,686	3,990,778	5.26,190	5,374,715	5,419,308	$31 \times$	1,994,064	-297,30	7,678,977
		398,73		681,572	171,200	25\%	${ }^{11}$	451,152	503,56	576,359	655,298	820,211	911,487	918,29	17\%	402,216	68,997	540,2

Table 46: IRC - modelling choice: source of LGD - >2 modelling factors
EU Statistics for IRC

Figure 24: Additional P\&L charts with examples of low IQD

Portfolio 19: 3 months daily P\&L
(orange: daily median)

Portfolio 27: 3 months daily P\&L
(orange: daily median)

Portfolio 34: 3 months daily P\&L
(orange: daily median)

Portfolio 46: 3 months daily P\&L
(orange: daily median)

Figure 25: Additional P\&L charts with examples of high IQD

Portfolio 24: 3 months daily P\&L
(orange: daily median)

Portfolio 29: 3 months daily P\&L
(orange: daily median)

Portfolio 33: 3 months daily P\&L
(orange: daily median)

Portfolio 52: 3 months daily P\&L
(orange: daily median)

Figure 26: Comparison between IMV and truncated STD deviation method to select outlier for risk measures

Figure 26. Example of dispersion in VaR submission for Portfolio 1. Above the chart, marked in yellow: the portfolios which would have been excluded based on the IMV methodology outlier, which was used in 2019 (and before) to detect outliers among risk measures. Below the chart: the same submission, but marked in yellow, indicating the submissions that have been excluded in VaR and benchmarking statistics in the 2020 exercise based on the +/- two times truncated standard deviation of the sample.

[^0]: ${ }^{1}$ IQD is defined as the absolute value of the ratio of the interquartile range ($Q 3-Q 1$) divided by the sum of the quartiles ($\mathrm{Q} 3+\mathrm{Q} 1$). The higher the IQD is, the higher the dispersion in the data.
 ${ }^{2} \mathrm{CV}$ is computed as the ratio of the standard deviation to the mean.

[^1]: ${ }^{3}$ These values are derived as a simple average of the IQD across all non-correlation trading portfolios.

[^2]: ${ }^{4}$ https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019L0878\&from=EN

[^3]: ${ }^{7}$ The range means the interval between the first and third quartiles. These quartiles were considered and subsequently updated when resubmissions were received.
 ${ }^{8}$ Some banks reported values for aggregated portfolios, taking into account only those components for which they had permission to use an internal model. This is clearly not a data quality issue and it is correct that banks report results only where they have permission to do so for regulatory purposes.
 ${ }^{9}$ Annex 5, Market risk 2020 BM, Section 1 (Common instructions), letter (ee).

[^4]: ${ }^{10}$ The truncated standard deviation is computed by excluding the values below the 5th and above the 95th percentile of the data series.

[^5]: ${ }^{11}$ The standard deviation was considered in order to gain a sense of the entire variability and a harmonised approach across the HPE. Obviously, a truncated standard deviation may appear more consistent for some highly dispersed trades.

[^6]: ${ }^{13}$ It should be noted that this expectation depends on the lookback period for VaR.

[^7]: ${ }^{14}$ Some banks apply data weightings at a risk factor level and these will be present in the P\&L vectors. This is an implicit source of variability that cannot be controlled.

[^8]: ${ }^{15}$ The portfolio median is the median of the average VaR and sVaR over the submission period.
 ${ }^{16}$ Note that the figures are restricted to VaR-median and sVaR-median ratios below 450\%.

[^9]: ${ }^{17}$ The minimum among the single asset class portfolios (1-21) between the 25 th and 75 th percentiles is 0.96 ; see

[^10]: 1825 banks adopted 1-day returns, while 13 banks adopted 10-day returns.
 1916 banks adopted 1-year, while 22 banks adopted > 1 year.
 ${ }^{20} 10$ banks adopted 1-day, unweighted \& 1-year, while 13 banks adopted 1-day, unweighted \& >1 year.

[^11]: ${ }^{21}$ The size of the trading book was defined as: (assets held for trading + liabilities held for trading) / (total assets * 2). Data source: FINREP data)
 ${ }^{22}$ https://eba.europa.eu/-/eba-reports-on-the-monitoring-of-the-Icr-implementation-in-the-eu

[^12]: ${ }^{23}$ (Level 3 assets held for trading + level 3 liabilities held for trading) / (assets held for trading+ liabilities held for trading)

[^13]: ${ }^{2}$ STDDe trunc is the standard deviation computed excluding values below the
 ${ }^{2}$ Refers to the number of banks included in the computation of the statistics

