OPTIMAL REGULATION OF CREDIT LINES

Jose E. Gutierrez¹

¹Banco de España

2023 EBA Policy Research Workshop
Paris, France
November 7, 2023

The views presented here do not necessarily represent those of the Bank of Spain or the Eurosystem.
Credit line (CL): Firms can draw down funds at will up to a limit at *predetermined terms* (interest rate + fees)
Credit line (CL): Firms can draw down funds at will up to a limit at *predetermined terms* (interest rate + fees)

Important item in firms and banks’ financial statements

- 42% of Spanish firms’ bank financing (Jiménez et al., 2009)
- Undrawn CLs are 40% of drawn CLs & term loans in US banks (Greenwald et al., 2023)
Credit line (CL): Firms can draw down funds at will up to a limit at predetermined terms (interest rate + fees)

- Important item in firms and banks’ financial statements
 - 42% of Spanish firms’ bank financing (Jiménez et al., 2009)
 - Undrawn CLs are 40% of drawn CLs & term loans in US banks (Greenwald et al., 2023)

- Funding is not always secured
 - Banks w/ high liquidity risk limit CL access (Acharya et al., 2020)
Introduction

- **Credit line (CL)**: Firms can draw down funds at will up to a limit at *predetermined terms* (interest rate + fees)

- Important item in firms and banks’ financial statements
 - 42% of Spanish firms’ bank financing (Jiménez et al., 2009)
 - Undrawn CLs are 40% of drawn CLs & term loans in US banks (Greenwald et al., 2023)

- Funding is not always secured
 - Banks w/ high liquidity risk limit CL access (Acharya et al., 2020)

- This partial insurance can negatively affect cash-strapped firms
 - E.g., reducing investment spending or selling assets in place (Campello et al., 2011)
Credit line (CL): Firms can draw down funds at will up to a limit at predetermined terms (interest rate + fees)

Important item in firms and banks’ financial statements
- 42% of Spanish firms’ bank financing (Jiménez et al., 2009)
- Undrawn CLs are 40% of drawn CLs & term loans in US banks (Greenwald et al., 2023)

Funding is not always secured
- Banks w/ high liquidity risk limit CL access (Acharya et al., 2020)

This partial insurance can negatively affect cash-strapped firms
- E.g., reducing investment spending or selling assets in place (Campello et al., 2011)

⇒ This paper provides a normative analysis of CLs
A contract-theoretical model of CLs in which

- Firms may need liquidity to avert their liquidation
A contract-theoretical model of CLs in which

- Firms may need liquidity to avert their liquidation
- Liquidations depress the equilibrium liquidation value (fire-sale externality)
A contract-theoretical model of CLs in which

- Firms may need liquidity to avert their liquidation
- Liquidations depress the equilibrium liquidation value (fire-sale externality)
- Total liquidity demand depends on an aggregate state

At an ex-ante stage

- Firms and banks agree on CL contractual terms (interest rates + fees)
- Banks choose pre-arranged funding and create cash reserves

Banks finance drawdowns with pre-arranged funding & ex-post funding

- Ex-post funding is limited by banks’ revenue
- In high liquidity need states, (costly) pre-arranged funding is key to maintain lending
- Low levels of pre-arranged funding provide limited insurance

Parties optimally agree on the CL contractual terms (prices + pre-arranged funding)
This paper

▶ A contract-theoretical model of CLs in which
 → Firms may need liquidity to avert their liquidation
 → Liquidations depress the equilibrium liquidation value (fire-sale externality)
 → Total liquidity demand depends on an aggregate state

▶ At an ex-ante stage
 → Firms and banks agree on CL contractual terms (interest rates + fees)
A contract-theoretical model of CLs in which

- Firms may need liquidity to avert their liquidation
- Liquidations depress the equilibrium liquidation value (fire-sale externality)
- Total liquidity demand depends on an aggregate state

At an ex-ante stage

- Firms and banks agree on CL contractual terms (interest rates + fees)
- Banks choose pre-arranged funding and create cash reserves
A contract-theoretical model of CLs in which
- Firms may need liquidity to avert their liquidation
- Liquidations depress the equilibrium liquidation value (fire-sale externality)
- Total liquidity demand depends on an aggregate state

At an ex-ante stage
- Firms and banks agree on CL contractual terms (interest rates + fees)
- Banks choose pre-arranged funding and create cash reserves

Banks finance drawdowns with pre-arranged funding & ex-post funding
- Ex-post funding is limited by banks’ revenue
A contract-theoretical model of CLs in which
- Firms may need liquidity to avert their liquidation
- Liquidations depress the equilibrium liquidation value (fire-sale externality)
- Total liquidity demand depends on an aggregate state

At an ex-ante stage
- Firms and banks agree on CL contractual terms (interest rates + fees)
- Banks choose pre-arranged funding and create cash reserves

Banks finance drawdowns with pre-arranged funding & ex-post funding
- Ex-post funding is limited by banks’ revenue
- In high liquidity need states, (costly) pre-arranged funding is key to maintain lending
A contract-theoretical model of CLs in which

- Firms may need liquidity to avert their liquidation
- Liquidations depress the equilibrium liquidation value (fire-sale externality)
- Total liquidity demand depends on an aggregate state

At an ex-ante stage

- Firms and banks agree on CL contractual terms (interest rates + fees)
- Banks choose pre-arranged funding and create cash reserves

Banks finance drawdowns w/ pre-arranged funding & ex-post funding

- Ex-post funding is limited by banks’ revenue
- In high liquidity need states, (costly) pre-arranged funding is key to maintain lending
- Low levels of pre-arranged funding provide limited insurance
A contract-theoretical model of CLs in which

- Firms may need liquidity to avert their liquidation
- Liquidations depress the equilibrium liquidation value (fire-sale externality)
- Total liquidity demand depends on an aggregate state

At an ex-ante stage

- Firms and banks agree on CL contractual terms (interest rates + fees)
- Banks choose pre-arranged funding and create cash reserves

Banks finance drawdowns w/ pre-arranged funding & ex-post funding

- Ex-post funding is limited by banks’ revenue
- In high liquidity need states, (costly) pre-arranged funding is key to maintain lending
- Low levels of pre-arranged funding provide limited insurance

Parties optimally agree on the CL contractual terms (prices + pre-arranged funding)
Main results

1. I solve for the optimal private arrangement
 → CLs offer partial insurance against liquidity shocks if high liquidity need states are rare

2. I analyze the efficiency of the optimal private arrangement
 → Banks choose low levels of pre-arranged funding, reneging on CLs to often
 → The partial insurance feature & the fire-sale externality justify a regulatory intervention

3. I discuss the implementation of the constrained-efficient allocation
 → It can be implemented using a minimum requirement on pre-arranged funding

4. I examine the main determinants of the regulatory requirement
 → It should go up when the costs of maintaining liquidity buffers are lower, the costs of liquidating firms are higher, or high liquidity need states occur more frequently
Main results

1. I solve for the optimal private arrangement
 → CLs offer partial insurance against liquidity shocks if high liquidity need states are rare

2. I analyze the efficiency of the optimal private arrangement
 → Banks choose low levels of pre-arranged funding, reneging on CLs to often
 → The partial insurance feature & the fire-sale externality justify a regulatory intervention
Main results

1. I solve for the optimal private arrangement
 → CLs offer partial insurance against liquidity shocks if high liquidity need states are rare

2. I analyze the efficiency of the optimal private arrangement
 → Banks choose low levels of pre-arranged funding, reneging on CLs to often
 → The partial insurance feature & the fire-sale externality justify a regulatory intervention

3. I discuss the implementation of the constrained-efficient allocation
 → It can be implemented using a minimum requirement on pre-arranged funding
Main results

1. I solve for the optimal private arrangement
 → CLs offer partial insurance against liquidity shocks if high liquidity need states are rare

2. I analyze the efficiency of the optimal private arrangement
 → Banks choose low levels of pre-arranged funding, reneging on CLs to often
 → The partial insurance feature & the fire-sale externality justify a regulatory intervention

3. I discuss the implementation of the constrained-efficient allocation
 → It can be implemented using a minimum requirement on pre-arranged funding

4. I examine the main determinants of the regulatory requirement
 → It should go up when the costs of maintaining liquidity buffers are lower, the costs of liquidating firms are higher, or high liquidity need states occur more frequently
OUTLINE

1. Introduction
2. Model
3. Equilibrium Analysis
4. Social welfare analysis
5. Conclusions
OUTLINE

1. Introduction
2. Model
3. Equilibrium Analysis
4. Social welfare analysis
5. Conclusions
Three dates: $t = 0, 1, 2$
Environment

- Three dates: $t = 0, 1, 2$
- Three types of risk-neutral agents

- Firms → 1 unit of funds at date 1 may be needed to avert their liquidation
- Banks → channel funds from investors to firms by means of CLs → (Junior) pre-arranged funding
 - E is raised at $t = 0$
 - D is raised at $t = 1$ as needed
- Investors → demand $R + \delta$ ($\delta \geq 0$) and $R > 1$ at date 2 for E and D, respectively
Environment

- Three dates: $t = 0, 1, 2$
- Three types of risk-neutral agents
 1. **Firms**
 - 1 unit of funds at date 1 may be needed to avert their liquidation
Three dates: $t = 0, 1, 2$

Three types of risk-neutral agents

1. **Firms**
 - 1 unit of funds at date 1 may be needed to avert their liquidation

2. **Banks** channel funds from investors to firms by means of CLs
 - (Junior) pre-arranged funding E is raised at $t = 0$
 - D is raised at $t = 1$ as needed
Environment

- Three dates: $t = 0, 1, 2$
- Three types of risk-neutral agents
 1. **Firms**
 - 1 unit of funds at date 1 may be needed to avert their liquidation
 2. **Banks** channel funds from investors to firms by means of CLs
 - (Junior) pre-arranged funding E is raised at $t = 0$
 - D is raised at $t = 1$ as needed
 3. **Investors** demand $R + \delta$ ($\delta \geq 0$) and $R > 1$ at date 2 for E and D, respectively
Measure one of identical firms that may need $\ell = 1$ at date 1 to avert liquidation.
Measure one of identical firms that may need $\ell = 1$ at date 1 to avert liquidation

Individual uncertainty

ℓ is iid and revealed at $t = 1$ according to

$$\ell = \begin{cases} 1, & \text{w.p. } \alpha, \\ 0, & \text{w.p. } 1 - \alpha \end{cases}$$

α: Firms’ demand for liquidity
Firms (I)

- **Measure one** of identical firms that may need $\ell = 1$ at date 1 to avert liquidation

- Individual uncertainty
 - ℓ is iid and revealed at $t = 1$ according to

 $$\ell = \begin{cases}
 1, & \text{w.p. } \alpha, \\
 0, & \text{w.p. } 1 - \alpha
 \end{cases}$$

 - α: Firms’ demand for liquidity

- Aggregate uncertainty
 - $\alpha \sim g(\cdot)$ is publicly revealed at $t = 1$
 - $g(\cdot)$ is known when contracting at $t = 0$
At $t = 2$, the firm produces a cash flow

$$\tilde{x} = \begin{cases} X, & \text{if not liquidated,} \\ Q(z), & \text{if liquidated,} \end{cases}$$

where z is the aggregate size of liquidations and $Q' \leq 0$.

At most $Y < X$ can be pledged to outsiders A_2. $Y < R$ (spot lending is not feasible). Payoffs can be derived from a model of debt overhang with a secondary market for specialized assets.
At $t = 2$, the firm produces a cash flow

$$\tilde{x} = \begin{cases}
X, & \text{if not liquidated}, \\
Q(z), & \text{if liquidated},
\end{cases}$$

where z is the aggregate size of liquidations and $Q' \leq 0$

A1. $X - R > Q(0)$ (continuation return $>$ liquidation return)
At $t = 2$, the firm produces a cash flow

$$
\tilde{x} = \begin{cases}
X, & \text{if not liquidated,} \\
Q(z), & \text{if liquidated,}
\end{cases}
$$

where z is the aggregate size of liquidations and $Q' \leq 0$

A1. $X - R > Q(0)$ (continuation return > liquidation return)

At most $Y < X$ can be pledged to outsiders
At $t = 2$, the firm produces a cash flow

$$\tilde{x} = \begin{cases}
X, & \text{if not liquidated,} \\
Q(z), & \text{if liquidated,}
\end{cases}$$

where z is the aggregate size of liquidations and $Q' \leq 0$

A1. $X - R > Q(0)$ (continuation return > liquidation return)

- At most $Y < X$ can be pledged to outsiders

A2. $Y < R$ (spot lending is not feasible)
At $t = 2$, the firm produces a cash flow

$$\tilde{x} = \begin{cases}
X, & \text{if not liquidated,} \\
Q(z), & \text{if liquidated,}
\end{cases}$$

where z is the aggregate size of liquidations and $Q' \leq 0$

A1. $X - R > Q(0)$ (continuation return > liquidation return)

- At most $Y < X$ can be pledged to outsiders

A2. $Y < R$ (spot lending is not feasible)

- Payoffs can be derived from a model of debt overhang with a secondary market for specialized assets
The representative bank offers CL contract \((B, f, E)\) to firms at \(t = 0\)

- Access to 1 unit of funds

\(\text{Jose E. Gutierrez (BdE)}\)

“Optimal Regulation of Credit Lines”
The representative bank offers CL contract \((B, f, E)\) to firms at \(t = 0\)

- Access to 1 unit of funds
- Payment scheme: a gross interest rate \(B\) if funds are used and a fee \(f\) if not
The representative bank offers CL contract \((B, f, E)\) to firms at \(t = 0\)

- Access to 1 unit of funds
- Payment scheme: a gross interest rate \(B\) if funds are used and a fee \(f\) if not
- Pre-arranged funding \(E\) (per committed funds) is stored as cash at date 0
The representative bank offers CL contract \((B, f, E)\) to firms at \(t = 0\)

→ Access to 1 unit of funds
→ Payment scheme: a gross interest rate \(B\) if funds are used and a fee \(f\) if not
→ Pre-arranged funding \(E\) (per committed funds) is stored as cash at date 0
→ \(E\) is junior to funding \(D\) raised at \(t = 1\) (e.g., LT debt or equity)
The representative bank offers CL contract \((B, f, E)\) to firms at \(t = 0\)

- Access to 1 unit of funds
- Payment scheme: a gross interest rate \(B\) if funds are used and a fee \(f\) if not
- Pre-arranged funding \(E\) (per committed funds) is stored as cash at date 0
- \(E\) is junior to funding \(D\) raised at \(t = 1\) (e.g., LT debt or equity)

Contractual terms \(B, f,\) and \(E\) are determined by competition at \(t = 0\)
The Allocation Problem

In high liquidity need states, α may be unfeasible to meet: $D < \alpha - E$

- The bank randomly reneges on some CLs
- Firms in need of cash are liquidated
In high liquidity need states, α may be unfeasible to meet: $D < \alpha - E$

- The bank randomly reneges on some CLs
- Firms in need of cash are liquidated

(Junior) pre-arranged funding E helps to sustain lending over a wider range of α’s

- Claims associated to E can be diluted to raise additional funds at $t = 1$
- Yet, pre-arranged funding E demands a higher return
OUTLINE

1. Introduction
2. Model
3. Equilibrium Analysis
4. Social welfare analysis
5. Conclusions
Solving for the unregulated CL contract

The representative bank’s problem:

- **Given aggregate liquidations** $z(\alpha)$, the expected payoff of the representative firm is maximized subject to
 - The participation constraint of investors who provide E
Solving for the unregulated CL contract

The representative bank’s problem:

- Given aggregate liquidations $z(\alpha)$, the expected payoff of the representative firm is maximized subject to:
 1. The participation constraint of investors who provide E

(\dagger) Symmetric eq. can fully characterize the unregulated CL (B^U, f^U, E^U)
The representative bank’s problem

Given aggregate liquidations \(z(\alpha) \), the representative bank maximizes

\[
\max_{B,f,E} \int_0^{\alpha} \left((1 - \alpha)(X - f) + \alpha(X - B) \right) g(\alpha) d\alpha + \int_{\alpha}^{1} \left((1 - \alpha)(X - f) + \alpha \left(\frac{L}{\alpha}(X - B) + (1 - \frac{L}{\alpha})Q(z) \right) \right) g(\alpha) d\alpha,
\]

subject to the initial investors’ participation constraint

\[
(R + \delta)E = \int_0^{\alpha} \left(\alpha B + (1 - \alpha)f - R(\alpha - E) \right) g(\alpha) d\alpha. \quad \text{(PC)}
\]
Unregulated CL contract

- Trade-off of increasing E:
 - Wider realizations of α can be insured
 - Financing E is costlier
Unregulated CL contract

- Trade-off of increasing E:
 - Wider realizations of α can be insured
 - Financing E is costlier

- Contractual terms are chosen to equalize marginal benefit to marginal cost of E
Unregulated CL contract

▶ Trade-off of increasing E:
 → Wider realizations of α can be insured
 → Financing E is costlier

▶ Contractual terms are chosen to equalize marginal benefit to marginal cost of E

▶ If high realizations of α are rare, E is optimally chosen s.t. the unregulated CL contract does not provide full insurance
Unregulated CL contract

- Trade-off of increasing E:
 - Wider realizations of α can be insured
 - Financing E is costlier
- Contractual terms are chosen to equalize marginal benefit to marginal cost of E
- If high realizations of α are rare, E is optimally chosen s.t. the unregulated CL contract does not provide full insurance
- Are liquidations in high liquidity need states due to partial insurance efficient?
OUTLINE

1. Introduction
2. Model
3. Equilibrium Analysis
4. Social welfare analysis
5. Conclusions
Solving for the constrained efficient CL contract

The social planner’s problem:

- The expected payoff of the representative firm is maximized subject to
 1. The participation constraint of investors who provide E
 2. **Aggregate liquidations**
In the presence of a fire-sale externality, there is scope for regulation.
In the presence of a fire-sale externality, there is scope for regulation.

Trade-off of increasing E:
- Wider realizations of α can be insured + excessive liquidations can be avoided.
- Financing E is costlier.
Constrained efficient CL contract

- In the presence of a fire-sale externality, there is scope for regulation.
- Trade-off of increasing E:
 - Wider realizations of α can be insured + **excessive liquidations** can be avoided
 - Financing E is costlier
- Contractual terms are chosen to equalize marginal social benefit to marginal social cost of E
In the presence of a fire-sale externality, there is scope for regulation

Trade-off of increasing E:
- Wider realizations of α can be insured + \textit{excessive liquidations} can be avoided
- Financing E is costlier

Contractual terms are chosen to equalize marginal social benefit to marginal social cost of E

Socially desirable to increase $E > E^U$
• By means of a regulation that requires banks to pre-finance CL drawdowns with a minimum E of pre-arranged junior funding (e.g., Basel III liquidity ratios)
• By means of a regulation that requires banks to pre-finance CL drawdowns with a minimum E of pre-arranged junior funding (e.g., Basel III liquidity ratios)

Result

If $E = E^*$, then the regulated eq. is constrained efficient.
Implementation

• By means of a regulation that requires banks to pre-finance CL drawdowns with a minimum E of pre-arranged junior funding (e.g., Basel III liquidity ratios)

Result

If $E = E^*$, then the regulated eq. is constrained efficient.

• Effects of regulation:
 → CLs become more expensive
Implementation

- By means of a regulation that requires banks to pre-finance CL drawdowns with a minimum E of pre-arranged junior funding (e.g., Basel III liquidity ratios)

Result

If $E = E^*$, then the regulated eq. is constrained efficient.

- Effects of regulation:
 - CLs become more expensive
 - Fewer costly liquidations in ’bad times’
Implementation

• By means of a regulation that requires banks to pre-finance CL drawdowns with a minimum E of pre-arranged junior funding (e.g., Basel III liquidity ratios)

Result

If $E = E^*$, then the regulated eq. is constrained efficient.

• Effects of regulation:
 → CLs become more expensive
 → Fewer costly liquidations in ’bad times’
 → A higher liquidation value is obtained if a liquidity need is not covered
1. Comparative statics show that the liquidity requirement should be higher if
 → The premium on pre-funding E is lower
1. Comparative statics show that the liquidity requirement should be higher if
 - The premium on pre-funding E is lower
 - High liquidity need states are more frequent
1. Comparative statics show that the liquidity requirement should be higher if
 → The premium on pre-funding E is lower
 → High liquidity need states are more frequent
 → Liquidations are costlier
1. Comparative statics show that the liquidity requirement should be higher if
 → The premium on pre-funding E is lower
 → High liquidity need states are more frequent
 → Liquidations are costlier
 → Liquidations values are very sensitive to each liquidation

2. Adequate tuning of the minimum liquidity requirement is relevant
 → High requirements can make CLs excessively costly
 → Low requirements can have null impact on welfare
1. Comparative statics show that the liquidity requirement should be higher if
 → The premium on pre-funding E is lower
 → High liquidity need states are more frequent
 → Liquidations are costlier
 → Liquidations values are very sensitive to each liquidation

2. Adequate tuning of the minimum liquidity requirement is relevant
 → High requirements can make CLs excessively costly
1. Comparative statics show that the liquidity requirement should be higher if
 - The premium on pre-funding E is lower
 - High liquidity need states are more frequent
 - Liquidations are costlier
 - Liquidations values are very sensitive to each liquidation

2. Adequate tuning of the minimum liquidity requirement is relevant
 - High requirements can make CLs excessively costly
 - Low requirements can have null impact on welfare
OUTLINE

1. Introduction
2. Model
3. Equilibrium Analysis
4. Social welfare analysis
5. Conclusions
Final Remarks

- In the unregulated competitive eq.,
 - CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
Final Remarks

- In the unregulated competitive eq.,
 - CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
 - Effect of liquidations on liquidation values is not internalized

Jose E. Gutierrez (BdE)
“Optimal Regulation of Credit Lines”
In the unregulated competitive eq.,

- CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
- Effect of liquidations on liquidation values is not internalized
- Chosen pre-funding is insufficient

A liquidity requirement that links pre-funded cash reserves to undrawn CLs can implement the constrained efficient allocation.

Though this requirement makes CLs more expensive, welfare improves by:

- More lending in high liquidity need states
- Higher liquidation values

The model can guide how regulators can tune up liquidity requirements on undrawn CLs in different jurisdictions.
In the unregulated competitive eq.,
 - CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
 - Effect of liquidations on liquidation values is not internalized
 - Chosen pre-funding is insufficient

A liquidity requirement that links pre-funded cash reserves to undrawn CLs can implement the constrained efficient allocation

- More lending in high liquidity need states
- Higher liquidation values
Final Remarks

- In the unregulated competitive eq.,
 - CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
 - Effect of liquidations on liquidation values is not internalized
 - Chosen pre-funding is insufficient

- A liquidity requirement that links pre-funded cash reserves to undrawn CLs can implement the constrained efficient allocation

- Though this requirement makes CLs more expensive, welfare improves
Final Remarks

- In the unregulated competitive eq.,
 - CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
 - Effect of liquidations on liquidation values is not internalized
 - Chosen pre-funding is insufficient

- A liquidity requirement that links pre-funded cash reserves to undrawn CLs can implement the constrained efficient allocation

- Though this requirement makes CLs more expensive, welfare improves
 - More lending in high liquidity need states

- The model can guide how regulators can tune up liquidity requirements on undrawn CLs in different jurisdictions.
Final Remarks

▶ In the unregulated competitive eq.,
 → CL terms (& banks’ pre-funding) are chosen in a privately efficient manner
 → Effect of liquidations on liquidation values is not internalized
 → Chosen pre-funding is insufficient

▶ A liquidity requirement that links pre-funded cash reserves to undrawn CLs can implement the constrained efficient allocation

▶ Though this requirement makes CLs more expensive, welfare improves
 → More lending in high liquidity need states
 → Higher liquidation values

▶ The model can guide how regulators can tune up liquidity requirements on undrawn CLs in different jurisdictions.
Appendix
Definition: Symmetric laissez-faire equilibrium

It consists of a choice \((B^U, f^U, E^U)\) for the representative bank and aggregate liquidations \(z^U(\alpha)\) such that

1. Given \(z^U(\alpha), (B^U, f^U, E^U)\) solves the bank’s optimization problem, that is,

\[
\max_{B,f,E} V(B, f, E)
\]

subject to the participation constraint (PC) of initial investors.

2. Given \((B^U, f^U, E^U)\), aggregate liquidations are computed as \(z^U(\alpha) = \alpha - L\ \ \forall \alpha\), where

\[
L = \begin{cases}
\alpha, & \text{if } \alpha \leq \bar{\alpha}, \\
\frac{RE^U + (1 - \alpha)f^U}{R - B^U}, & \text{if } \alpha > \bar{\alpha}.
\end{cases}
\]
Effect of the regulatory requirement on welfare

(A) Pre-arranged funding vs. Fire-sale externality intensity

(B) Welfare vs. Fire-sale externality intensity

- Laissez-faire
- Planner’s solution
Effect of the regulatory requirement on welfare

Welfare Gain (% relative to laissez-faire regime)

Regulatory Requirement E

E^U E^*