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Abstract

Successful cyberattacks decrease branch deposit growth rates at small US banks.
This decrease is due to the loss of trust of depositors in the ability of the hacked
small banks to protect their private information and not to concerns over bank
stability. The loss of trust results in a "flight-to-reputation" within local markets
leading to increased deposit flows to large banks and negative spillovers for some
unhacked small banks. As a result, local deposit markets become more dominated
by large banks and the access to credit to small borrowers decreases. Ultimately,
weak cybersecurity systems in small banks influence their ability to attract and
retain customers, lead to a change in market structure and reduce access to credit
of small local businesses.
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1 Introduction

Small banks play a pivotal and unique role in the economy (Behr et al., 2013; Berger

et al., 2017; Degryse and Van Cayseele, 2000). They facilitate the access to finance for

small firms that have otherwise limited funding opportunities and, in this way, they

offer a crucial contribution to the development of the local economy (Berger et al.,

2017; Hakenes et al., 2015). However, the digital transformation of the economy brings

new challenges to the business model of small banks by exposing the banking industry

to new risks, in particular cyber risks (Basel Committee on Banking Supervision, 2018;

Duffie and Younger, 2019; Mester et al., 2019).

Specifically, banks need continuous investments in cybersecurity to mitigate their

exposure to cyber risks and avoid successful cyberattacks that can undermine customer

trust (Chen et al., 2019; Kamiya et al., 2020; Kashyap and Wetherilt, 2019)1. The

reoccurring investments necessary to maintain a high level of cybersecurity require

significant financial resources that might not be sufficiently available to small banks

(Kashyap and Wetherilt, 2019; Paravisini, 2008)2. Consequently, these banks might

suffer from an investment gap in cybersecurity and remain more exposed to significant

cyber risks to their business than larger banks. Not surprisingly, therefore, more than

70% of small bankers have ranked cybersecurity as their top concern (Conference of

State Bank Supervisors, 2019). Indeed, a report by Nationwide indicates that almost

half of cybercrimes between 2012-2017 target US banks with assets below $1billion.

The potential business consequences of cybersecurity deficiencies in small banks can

be better understood in the context of theoretical models on the effects of investment

and innovation gaps among rival firms (see Bloom et al., 2013; Klette and Kortum,

2004). In these models, firms that underinvest in innovation become less competitive

and lose market share to more innovative firms. In a similar vein, gaps in cybersecurity

investments in small banks might induce customers to abandon these banks and shift
1See “5 Cybersecurity Myths Banks Should Stop Believing”, Forbes (2019), available at

https://www.forbes.com/sites/ronshevlin/2019/04/08/5-cybersecurity-myths-banks-should-stop-
believing/#6c83bb1d630d

2For instance, Deloitte (2019) shows that the average yearly cybersecurity investment by US banks
has surpassed 10% of their IT budget, equivalent to $2,300 per employee.
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to (large) rivals that are perceived as (digitally and technologically) safer. Following

this argument, cybersecurity deficiencies can be costly for small banks and ultimately

have an impact on the structure of local banking markets. The economic implications

of this structural change can be substantial given the competitive advantage of small

banks in lending to local businesses (Agarwal and Hauswald, 2010; Berger et al., 2005;

Skrastins and Vig, 2019; Stein, 2002).

In this paper, we build on the above arguments and present the first attempt to

document how cyberattacks create significant business challenges for small banks by

affecting their ability to retain and attract customers within a local market. More

precisely, we offer a comprehensive analysis of how depositors respond to successful

cyberattacks on small banks by assessing the direct effects of these attacks on deposit

growth at hacked banks, and their indirect effects (spillovers) on non-hacked large and

small banks. Jointly, these effects indicate the reallocation of deposits and the impact

on local banking markets. Additionally, we assess whether the direct and indirect

effects of cyberattacks result in a loss of competitiveness of small banks with negative

consequences for small business lending.

Our main focus on deposit markets is motivated by two reasons. First, depositors

are key bank stakeholders and their relationships with banks are based on trust (Chen

et al., 2019). This trust can be broken by cyberattacks compromising depositors’

confidential financial and personal information. Therefore, depositors are directly

affected by cyberattacks. Second, deposit markets are a key source of funding for

small banks and facilitate their lending business. Hence, if successful cyberattacks

reduce the competitiveness of small banks in deposit markets, they might have negative

consequences for the sustainability of the business model of these banks.

We base our analysis around (plausibly) exogenous cyberattacks involving small US

banks covered in the Privacy Rights Clearinghouse (PRC) database over the period

2005-2017. We employ these events in size-matched stacked difference-in-differences

analyses that control for differences between hacked and non-hacked banks and allow a

cleaner identification of the treatment effect in the presence of staggered events (Baker

et al., 2022; Gormley and Matsa, 2011).
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We start by documenting that the branches of hacked small banks experience an

economically significant 20 percentage point decline in the growth rate of their deposits

compared to a control group of branches of similar sized banks operating in the same

local deposit market. Our results are robust to a number of alternative empirical

settings, including the adoption of the estimation approach of Bertrand et al. (2004),

as well as different sets of fixed effects and estimation windows.

We next offer and contrast two potential explanations for the depositor response

to a successful cyberattack. Both explanations are grounded on the stipulation that

cyberattacks can undermine the trust of depositors in banks (Kamiya et al., 2020;

Mourouzidou-Damtsa et al., 2019; Sapienza and Zingales, 2012). As a result, depositors

might review existing contractual relationships with the hacked bank and decide

to withdraw their deposits (or might avoid to establish new relationships with the

hacked banks). The first explanation focuses on the loss of trust of depositors in the

ability of the hacked small banks to protect their private information (information

loss explanation). The second explanation is centered around the loss of trust in the

stability of the small bank sustained by the attack, and consequently in the bank’s

ability to protect savings (stability concern explanation). We present several analyses

that support the information loss explanation of the slowdown in deposit growth for

hacked banks.

First, we document larger declines in deposit growth in local markets where

depositors are plausibly more exposed to the risk of identity theft or when they are

less knowledgeable about cyber risk. Our findings suggest, therefore, that successful

cyberattacks, which more saliently and directly impact depositors’ personal welfare,

are likely to incite stronger responses from customers more exposed to the risk of

a malicious use of the stolen personal information and from unsophisticated bank

customers who might not be fully aware of the consequences and remediation processes

following a cyberattack.

Next, we show that depositor reactions are not driven by bank default risk or can

be explained by (potential) deteriorations in bank fundamentals that might arise as a

result of cyberattacks. Finally, we show the effects of a cyberattack on the contractual
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relationships between households and banks in mortgage markets. These relationships

represent an ideal setting to disentangle the two possible explanations of our finding

as they expose households to the risk of private information loss from a cyberattack

but not to a financial loss. We find that hacked banks attract riskier borrowers after

a cyberattack and are forced to originate riskier mortgages to maintain unchanged

mortgage approval rates. These effects are, therefore, consistent with the information

loss explanation of our results thereby hacked banks respond to the greater reluctance

of customers in establishing relationships in the mortgage market by relaxing their

origination criteria.

Having documented the negative consequences of cyberattacks on bank deposits and

mortgage origination of small banks and their motivation, we progress by examining if

cyberattacks generate spillover effects on non-hacked banks with potential consequences

on the structure of local deposit markets. We expect opposite sign of spillovers

for large and small unhacked banks. Specifically, our prior is that depositors are

unlikely to perceive successful cyberattacks on small and unlisted banks as indicative

of industry-wide weaknesses in cybersecurity that affect their trust on larger banks.

Instead, large banks might be perceived as digitally and technologically safer by

depositors because of their financial capacity to continuously invest in cybersecurity.

These banks can then benefit from positive spillovers via the reallocation of deposits

towards their branches The positive spillover would be consistent with a “business

stealing effect” favoring more innovative of rival firms and potentially increasing the

exit risk for less innovative firms (Bloom et al., 2013; Klette and Kortum, 2004).

Negative spillovers, with a consequent decline in branch deposit growth, may instead

affect other unhacked small banks operating in local deposit markets where branches

of the hacked small banks are present. The negative spillovers might result from

depositors’ perception that other small banking firms have similar vulnerabilities in

their cybersecurity systems as the hacked small banks. As a result, these unhacked

small banks still expose depositors to a high risk of private information loss from

cyberattacks.

We employ an alternative difference-in-differences setup to examine the spillover
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effects of cyberattacks on large and small banks. In this setup, we compare the

evolution of deposit growth of the branches of untreated banks in counties where

hacked small banks operate to the branches of the same untreated banks in adjacent

counties where hacked small banks do not operate. In line with our prediction, we

find positive spillovers towards branches of large banks. The spillovers are more

pronounced for large banks with an excellent reputation amongst customers but do

not depend on the systemic importance of these banks. The results indicate, therefore,

a “flight-to-reputation” effect in local deposit markets after successful cyberattacks on

small banks that differ from the “fight-to-safety” effect due to the systemic importance

of large banks previously highlighted by banking studies (see, for instance, Farhi and

Tirole, 2012).

For unhacked small banks, we do not observe any general negative spillover effect.

However, we find negative spillovers when these banks have more geographic overlaps

with the branch network of the hacked banks. This finding is consistent with the

importance of depositor’s local network for the spread of negative spillovers in local

deposit markets (Iyer et al., 2016) and with the presence of a local dimension in negative

spillovers leading to contagion risk in the US banking industry (Addoum et al., 2020;

Pino and Sharma, 2019).

We finally document that the highlighted direct and indirect effects of cyberattacks

result in significant market-wide consequences. We show that the growing importance

bank customers place on cybersecurity leads to in an increased market share of large

banks in local deposit markets and a reduced competitiveness of small banks. This

change in the structure of local deposit markets is accompanied by a reduced access

to credit by very small borrowers, consistently with the view that large banks tend to

be less inclined to supply small business lending (see, for instance, Bord et al., 2018;

Chen et al., 2017).

We contribute to three streams of research. The first focuses on the effects of

cyberattacks on corporations. This literature is primarily based on non-financial

firms and documents that cyberattacks generate reputational damages that lead to

reductions in shareholder value and risk appetite (Kamiya et al., 2020), decreased
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profitability (Akey et al., 2021) and higher audit fees (Li et al., 2020; Rosati et al.,

2019). Empirical investigations on the implications of cyberattacks on bank outcomes

are more limited. Eisenbach et al. (2020) simulate the externalities produced by

cyberattacks through the wholesale payments network while Bouveret (2018) proposes

a framework for the quantification of cyber risk in the financial industry. Aldasoro

et al. (2020) document that cyber losses account for a significant portion of total

operational value-at-risk. More closely related to our work is a contemporaneous study

by Engels et al. (2021) focusing on the implications of different forms of data breaches

for bank deposits and their cost. Differently from this study, we build a cleaner

identification strategy to focus on the impact of plausibly exogenous cyberattacks

on small banks, and on the consequences for the competitiveness of these banks in

local deposit markets, through a joint examination of the direct and indirect effects of

the attacks. Additionally, our analysis offers evidence beyond the deposit markets by

documenting the implications of the attacks for mortgage lending by the hacked banks

and for the aggregate small business lending in local markets.

Second, we contribute to the literature on how depositors react to the disclosure

of negative information by banks. A first group of studies focuses on the disclosure

of financial information (Berger et al., 2005; Chen et al., 2020; Iyer et al., 2016;

Martinez Peria and Schmukler, 2001). The general consensus is that depositors react

negatively to financial information highlighting negative bank performance, although

there is heterogeneity in the response depending on the ability and incentives of

depositors to monitor banks (Danisewicz et al., 2018; Chen et al., 2020). More closely

related to our analysis are studies documenting deposit outflows for banks disclosing

negative non-financial information linked to poor social performance (Chen et al.,

2019; Homanen, 2018). We complement these studies by showing that cyberattacks

not only lead to negative responses by depositors, but result in the re-distribution of

deposits in local deposit markets via positive spillover effects towards larger banks and

negative spillovers to some unhacked small banks. We document that the effects have

implications for the structure of local deposit markets and lead to a decline in the

growth of loans to very small borrowers.
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Finally, our study is related to the literature on operational risks in banks. Earlier

analyses show that most of the operational losses at US financial institutions are

produced by failures in internal control systems (Chernobai et al., 2011). More recently,

Chernobai et al. (2020) document that operational risks are more pronounced in

complex banks. Barakat et al. (2019) highlight the negative value effects arising from

media announcements of operational risk events especially when the information on

the event is opaque. Although frequently classified as part of operational risks, cyber

risk shows key peculiarities related to the potential loss of confidentiality that could

lead to damages to the integrity of data or systems (Eisenbach et al., 2020; Mester

et al., 2019). These aspects are a potential concern for all stakeholders that engage

in a contractual relationship with a bank and motivate our primary focus on deposit

markets.

2 Identification Strategy and Data

2.1 Treated and Control Banks

Our analysis is based on cyberattacks targeting small US commercial banks between

2005-20173. We identify these attacks starting from a list of all data breach incidents in

the Privacy Rights Clearinghouse (PRC) database over the same period. This database

includes breaches that are reported in a timely manner under State Security Breach

Notification Laws (see Akey et al., 2021; Kamiya et al., 2020).

Within the data breaches included in PRC, we first retain only breaches that affect

financial firms. We next select events that satisfy the following three criteria: i) they

target a small commercial bank (defined following the Federal Reserve’s classification

as a bank with total assets up to $10bln at the time of the data breach); ii) they

are classified as a “HACK” by PRC; that is, they are caused by external parties and

result in the loss of customer personal or financial information; iii) they affect banks

with detailed branch deposit data in the Summary of Deposits (SOD) provided by
3We do not include more recent cyberattacks in our sample because the implementation of our

identification strategy requires three years of bank data after the attack has been reported.
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the FDIC and accounting data from call reports. Using this sampling procedure, we

identify 16 cyberattacks on small US banks. We provide detailed information of the

sampled cyberattacks in Table A1 of the Online Appendix.

The second criterion ensures that the events are plausibly exogenous (Kamiya et al.,

2020), whereas the third criterion allows us to have detailed geographic data on branch

deposits that we employ as one of the key inputs of our matching strategy between

hacked small banks and non-hacked banks (control group). In particular, the matching

is based on i) geographic location of branches of the two groups of banks and ii) size

similarity between these banks.

The geographic matching alleviates concerns that confounding geographical supply

and demand factors might bias the analyses4. Matching by bank size is instead

important because, as documented by previous research, large banks have advantages

in deposit markets (Jacewitz and Pogach, 2018; Oliveira et al., 2015). For instance,

large banks have lower funding costs due to the too-big-to-fail subsidy (Jacewitz and

Pogach, 2018).

To implement our geographic matching between the two groups of banks, we first

identify the state in which a cyberattack is reported according to PRC. Within the

identified state, we select all counties in which the affected banks operate branches

according to the SOD data. These branches represent our treated group. Next, for

each county in which the hacked bank operates, we form a control group of branches

owned by commercial banks of similar size.

To ensure size similarity between the treated and untreated small banks, our initial

strategy is as follows. We divide treated banks with assets below the $10bln threshold

into two size-based groups, i) treated banks with assets up to $1bln and ii) treated banks

with assets between $1bln and up to $10bln. When we match branches of treated and

untreated banks at the county level, the control group consists only of branches of

untreated banks falling into the same size group as the hacked bank. In section 2.3,
4One example of geographical drivers affecting deposit markets is the fraction of seniors across

different geographical regions. Becker (2007) shows that the volumes of deposits are higher in areas
with more senior citizens. Hence, if seniors react differently to cyberattacks, and have different deposit
trajectories, comparing branches of treated and untreated banks from different geographic areas might
yield biased results.
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we show that this simple matching approach is sufficient to ensure similarity between

treated and untreated banks across several bank characteristics including profitability

and risk. Furthermore, in additional tests discussed in section 3, we show that our

analysis remains valid for a much tighter size matching between treated and untreated

banks.

2.2 Econometric Method

We use a stacked difference-in-differences approach to estimate the causal impact of

cyberattacks on depositor behavior (Gordon et al., 2011; Baker et al., 2022). We

construct cohorts of treated branches for each event and for each cohort we include as a

control group only bank branches that have not previously experienced a cyberattack.

We then stack the cohorts to estimate the average treatment effect. This approach

allows us to more cleanly capture the treatment effect (Gormley and Matsa, 2011; Guo

et al., 2019) and avoid identification problems in staggered difference-in-differences

settings as highlighted by Baker et al. (2022).

Initially, we restrict the estimation window to 7 (-3;+3) years around each

cyberattack, although we also report results for smaller estimation windows to remove

potential confounding factors. The largest sample we employ includes a total of 3,076

(12,384) observations belonging to branches of treated (untreated) banks. Our model

takes the following functional form:

(1)
Ln(Deposits)i,j,z,c,t = α + β1 Treatedi,j,c × Postc,t + BRANCH

+ COUNTY×TIME + εi,j,z,c,t,

where Ln(Deposits) is the logarithmic transformation of deposits in thousands of

US$ in branch i of bank j in county z, and belonging to a cohort c at time t. Treated

is a dummy that equals one if a branch i in a given cohort c belongs to an hacked bank

j and zero otherwise; Post is a dummy equal to one in a cohort c in the post-shock

window (up to 3 years after the shock). The coefficient β1 is the difference between

how the dependent variable changes in the branches of treated banks (namely, banks
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affected by a cyberattack) and in the branches of untreated banks (those not affected

by a cyberattack) after the shock. Since the dependent variable is the logarithmic

transformation of branch deposits, the estimated coefficient is approximately equivalent

to the difference in the average growth rate of the US$ value of deposits in the groups

of branches of treated and control banks from the pre- to the post-shock period. In

equation (1) we cluster standard errors at the bank level to control for within bank

correlation in the evolution of deposits. Our results remain unchanged if we cluster the

standard errors at the branch level.

The model includes branch (BRANCH) and county × year (COUNTY) × TIME

fixed effects. The first set of fixed effects controls for branch-specific time-invariant

omitted variables while county × year fixed effects remove any time-varying

county-level factors such local business cycles (e.g., unemployment housing demand

and shale gas discoveries) that could affect local deposit market (Gilje et al., 2016;

Mian and Sufi, 2014). With these two sets of fixed effects in place, we are comparing

the changes in deposits in treated branches relative to the change in the control group

of branches (belonging to similarly sized banks) in the same county in a given year.

[TABLE 1 HERE]

Initially, equation (1) does not include bank-specific control variables because a

cyberattack can affect these controls, making it difficult to interpret the coefficient of

Treated × Post (Gormley and Matsa, 2011). Nevertheless, to mitigate concerns over

omitted variables, we report two additional specifications with bank controls computed

from annual call reports and measured with 1-year lag to reduce endogeneity concerns.

In the first specification, we add bank size (the logarithmic transformation of bank total

assets in thousands of US$). In the second specification we control also for profitability,

via the ratio between net income and total assets (ROA), capital adequacy, using tier 1

capital divided by risk weighted assets (Tier 1 ), credit risk, defined as non-performing

loans scaled by total loans (NPL), asset composition, that is, total loans divided by

total assets (Loans), and bank productivity, via the ratio between total assets and the
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number of employees (Productivity). Panel A of Table1 provides summary statistics

for the variables we employ. Table A2 in the Online Appendix offers a description of

these variables and the related data sources.

2.3 Comparing the Treated and Control Group and Testing for

Parallel Trends

Our empirical strategy requires that the untreated group represents an adequate

counterfactual. This section presents several stylized facts to confirm that our setting

satisfies this requirement.

2.3.1 Characteristics of Treated and Control Branches and Banks

We start by showing that the branches, and the related commercial banks, in the

treated and control groups are sufficiently similar in their characteristics before the

cyberattack. This comparison is important for two reasons. First, it allows us to

alleviate concerns related to the propensity of some banks to be targets of cyberattacks

conditional on their observable characteristics. For instance, Kamiya et al. (2020) show

that firms that are more profitable are more likely to be targets of cyberattacks. Second,

it also alleviates concerns that the two groups of banks differ along unobservable

dimensions that might bias our results (Roberts and Whited, 2013).

Panel B of Table 1 reports the results of this comparison. Columns (2) and (3)

present the average values of our dependent variable as well as bank controls for the

treated and control group in the year before the cyberattack. Column (4) reports

the normalized differences in branch and bank characteristics between the two groups

computed as follows (Brown and Earle, 2017; Nicoletti, 2018):

(2)NDIFF =
x̄i − x̄j√
s2
i + s2

j

,

Where x̄i (s2
i ) is the mean (variance) of a variable for the untreated group and x̄j

(s2
j) is the mean (variance) of the same variable for the treated group. We note that the
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differences between the untreated and the treated group are below the threshold value

of 0.25. Imbens and Wooldridge (2009) highlight that a value below this threshold is

necessary to ensure that the two groups of observations are sufficiently homogeneous.

The findings discussed above might not completely rule out the possibility that

the two groups of banks have different ex-ante probabilities of being hacked. Panel C

offers evidence against this argument. This Panel presents the results of a logit model

wherein we estimate whether the probability of being hacked can be predicted by bank

characteristics measured with a 1-year lag. We find that none of the selected bank

characteristics are a significant predictor of the likelihood to be hacked. Overall, this

section suggests that our simple size matching is sufficient to achieve a high degree

of homogeneity between the two groups of banks in terms of potential exposure to

cyberattacks.

2.3.2 Parallel Trends Assumption

A key assumption of our difference-in-differences analysis is that, absent the shock

(cyberattack), treated and untreated branches would have shown a similar evolution

in the (log transformation) of deposits (parallel trends assumption). This assumption

cannot be directly validated because we are unable to observe the evolution of deposits

in the treated group in the absence of a cyberattack. However, the literature offers

different options to examine whether the parallel trends assumption is plausible. In

particular, if the two groups of branches follow similar trends in the evolution of deposits

prior to the cyberattack, the parallel trends assumption is deemed to be reasonable.

We conduct two analyses to investigate pre-shock trend dynamics in the two groups.

First, we follow Lemmon and Roberts (2010) and report the average one-year change

in the dependent variable across the two groups of branches in each of the 3 years

preceding the cyberattack. These average values are reported in the first two columns

of Panel D in Table 1. In column (3), we test if these averages significantly differ

between the two groups of branches using t-tests. For the parallel trends assumption

to be plausible, the differences should not be statistically different from zero. The

results in column (4) show this is the case.
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[FIGURE 1 HERE]

Second, Figure 1 plots the trend in Ln(Deposits) for the two groups of branches

in the pre-cyberattack period. We estimate the trends from a linear specification that

includes branch and county × year fixed effects as well as bank controls. The estimated

values of Ln(Deposits) in Figure 1 do not reveal any discernible differences in the trends

of the two groups before the cyberattack. Overall, our tests suggest that the parallel

trends assumption seems plausible in our setting.

3 Direct Effects of Cyberattacks

3.1 Cyberattacks and Deposits

This section presents our baseline results. Panel A of Table 2 shows a simple univariate

difference-in-differences analysis to estimate the average treatment effect. We compute

the average difference in Ln(Deposits) between the post and the pre-event period

for groups of treated and untreated branches and then test whether these differences

significantly differ between the two groups (using a t-test of equality of means). We

find that, although both groups show a significant increase in Ln(Deposits) over the

event window, the increase is significantly smaller for treated branches.

[TABLE 2 HERE]

In Panel B of Table 2, we show the results for equation (1). As mentioned previously,

the coefficient of interest is the interaction term Treated × Post. The coefficient

measures the change in the dependent variable (Ln(Deposits)) in the treated group

from the pre-shock period to the post-shock period compared to the same change

observed for the control group. In column (1), we report the estimates from a model

that only includes branch and county × year fixed effects. In column (2), we control

for bank size and lastly, in column (3), we add the remaining controls.

13



Throughout all specifications, and in line with the results in Panel A, the coefficient

of Treated× Post is negative and statistically significant at the 1% level. The coefficient

ranges from -0.216 in column (3) to -0.250 in column (1). Ultimately, the results

consistently indicate that, compared to the control group, branches of banks affected

by a cyberattack experience a decrease in the growth rate of their deposits. The

magnitude of this decrease is economically large: using the model in column (3), we find

that treated branches report a deposit growth rate that is approximately 22 percentage

points lower than the growth rate of the branches in control group. Notably, none of

the controls have a significant effect on the dependent variable.

One concern is that unobserved heterogeneity due to size differentials between the

two groups of banks is not entirely removed by our matching strategy. In the Online

Appendix, we address this concern using a tighter size matching5. We divide the two

size bins we have employed in our matching (up to $1bln and from $1bln to $10bln)

into quartiles. For instance, the first quartile of the first (second) size bin goes up

to $250mln ($2.5bln). We then match banks in the treated group with untreated

banks falling in the same quartile within each size category. As shown in Table A3

in the Online Appendix, results based on this alternative matching confirm our initial

findings6.

In summary, while studies on non-financial firms have shown firm-level consequences

of cyberattacks, taking the perspective of shareholders of large firms (see, for instance,

Akey et al., 2021; Kamiya et al., 2020), we show the direct effects of cyberattacks on

small firms through key stakeholders (namely, depositors).

3.2 Additional Tests

In Table 3, we report additional specifications that document the robustness of our

results. First, in column (1) we address concerns related to standard errors. Bertrand
5However, in this respect, it is important to note that the difference-in-differences model does not

require similar deposit levels in the treated and untreated banks prior to the shock. It only requires
similarity in trends as discussed in our analysis in the previous section.

6Notably, the tighter matching approach significantly reduces the number of observations that
enter the regression analysis (we lose approximately 70% of observations). Therefore, we rely on the
wider size bins in our main analysis.
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et al. (2004) argue that biased standard errors might arise from the analysis of serially

correlated outcomes. To mitigate this potential bias, we follow their approach and

collapse the estimation period to one period before and one period after the shock

using the average values of our dependent variable Ln(Deposits) (as well as the other

variables employed in our main test) computed for the pre and post 3-year event

window. The results confirm our main findings.

[TABLE 3 HERE]

Next in column (2) we use a 5 (-2;+2) year estimation window, while in the next

column we employ a 3 (-1;+1) year window. The use of shorter estimation windows

reduces the possibility of noise biasing the treatment effects and also partially alleviates

issues emerging around serially correlated outcomes, as discussed above. In both

settings, our results remain intact. In column (4) we use a different set of fixed effects

(as compared to our main specification in Table 2). Specifically, we follow Gormley

and Matsa (2011) and replace branch fixed effects with branch × cohort fixed effects.

Gormley and Matsa (2011) argue that allowing firm (branch) fixed effect to vary by

cohort is a more conservative approach than using firm (branch) fixed effects. Following

this approach, we do not find any material changes to our results.

In column (5) we collapse our branch-county level observations to the bank-county

level. While less granular, this approach allows us to reduce the possibility that any

noise or outliers at the branch-level might be driving our results and it also allows

us to understand the overall effect of cyberattacks on deposit growth rates in local

markets. To implement this analysis, we use the logarithmic transformation of the

total amount of deposits of each treated and control bank in our sample in a given

county as the dependent variable and re-estimate a modified specification of equation

(1). Specifically, we include bank and county × year fixed effects and cluster standard

errors at the bank level. Consistent with our main analysis, we observe evidence of a

relative decline in deposit growth for treated banks.

Finally, in the last column of Table 3, we implement a falsification test to validate
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the causal interpretation of our findings. We assume that the cyberattacks occurred

seven years prior to their actual date and re-estimate the difference-in-differences

model based on 3 years before (after) the new identified event data. By moving the

event-window 7 years back, we avoid any overlap between the post-estimation window

in the placebo test and the pre-estimation window in our initial approach. In this

artificial setting, we should not observe any changes in deposit growth for the treated

branches. To conduct the test, we interact a dummy (Treated_Fake) equal to one for

the banks that have suffered from a cyberattack in our original setting with a dummy

(Post_Fake) taking a value of one in the three years after the falsely dated (placebo

date) cyberattack. Consistent with our expectation, the interaction term Treated_Fake

× Post_Fake is not significant. This “non-result” further supports the interpretation

that the negative effect on deposit growth rates, documented in our main analysis

(Table 2), is likely the result of depositor responses to cyberattacks.

Hence, the results in this section are consistent with our initial finding that

successful cyberattacks lead to a significant slowdown in the deposit growth of hacked

small banks.

3.3 What Drives the Depositor Response? Private Information

Loss Versus Small Bank Stability

We show decreases in deposit growth for hacked small banks. In this section, we

conduct various tests to understand what drives this result. In particular, we contrast

two possible explanations that have different policy implications. Both explanations

are based on the fact that contractual agreements between banks and depositors

are built on trust; namely, banks are expected to safeguard depositors’ savings and

their confidential information. When a successful cyberattack occurs, the trust of

depositors in the hacked bank is damaged (Kamiya et al., 2020). Depositors might

then react by withdrawing their deposits (or by avoiding relationships with the affected

banks). In line with this view, Sapienza and Zingales (2012) show, through survey

evidence, that lower trust in banks increases the probability of deposit withdrawals.
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Similarly, Mourouzidou-Damtsa et al. (2019) find that higher levels of trust in a country

are associated with higher levels of deposits due to better retention and loyalty of

customers. The two explanations discussed below, however, differ in the rationale for

the loss of trust by depositors.

The first explanation places emphasis on the loss of trust in the ability of the hacked

small banks to keep private data safe. Under this perspective, depositors are not

concerned about the stability of the small bank but react to the cyberattacks because

they are exposed to the loss of private information (information loss explanation).

This explanation highlights, therefore, the importance to ensure that small banks

have ex-ante adequate cybersecurity systems in place to protect private data of their

customers.

The second explanation focuses on the possibility that depositors lose trust in the

stability of the small bank and, consequently, in its ability to protect their savings.

Accordingly, the successful cyberattack is perceived as an indication of fragility of the

hacked small bank and might result in the risk of losing the availability of funding due

to future bank distress (stability concern explanation). Along these lines, theoretical

work suggests that deposits flow from distressed banks towards healthier institutions

(Egan et al., 2017). This explanation would highlight the need to reassure investors

ex-post of the soundness of the small hacked banks.

The following sections present a series of tests aiming at understanding if private

information loss or concerns over bank stability drive the depositor response to

cyberattacks.

3.3.1 Exposure to Identity Theft, Depositor Digital Sophistication and

Response to Cyberattacks

We initially exploit depositor heterogeneity in terms of ex-ante exposure to identity

theft and digital sophistication. The events we consider directly affect bank depositors

and signal the risk of a threat through third parties. If concerns over data loss, and not

bank stability, are driving our results, cyberattacks should lead to a stronger response

in markets where depositors are more exposed to the risk of identity theft through the
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use of their private information. Additionally, the attacks might cause more anxiety

in digitally unsophisticated depositors as they are less likely to understand the exact

ramifications of cyberattacks (Solove and Citron, 2017). Therefore, we should observe

a stronger reaction by digitally unsophisticated depositors that overreact to the shock.

In contrast, if we are capturing broader concerns in terms of bank fragility, there is no

obvious reason to expect that our results differ by the exposure to identity theft risk

or level of depositor digital sophistication.

[TABLE 4 HERE]

To account for the exposure of depositors to the risk of identity theft, we rely on data

from the Federal Trade Commission (FTC). Through their periodic Consumer Sentinel

Network Report, the FTC offer indications of the number of consumer complaints

per 100,000 population related to identity theft in each metropolitan statical area

(MSA). Treated banks are then sorted into high and low risk exposure to identify theft

groups if they are above or below the median values of the variable above in the year

before cyberattacks (Treated High (Low) Identity Theft Risk). We finally estimate the

following specification:

(3)
Ln(Deposits)i,j,z,t = α + β1(Treated High Identity Theft Risk× Post)

+ β2(Treated Low Identity Theft Risk× Post)
+ BRANCH + COUNTY×TIME + εi,t,

where β1 (β2) measures the differential impact of a cyberattack for the group of

branches of banks which are headquartered in counties with high (low) identify theft

risk. In line with our baseline model, we estimate equation (3) with and without bank

controls.

We employ a similar empirical framework to analyze how our results are affected

by the degree of digital sophistication of depositors. We measure digital sophistication

using information from Form 477 on internet access connections per thousands of

households at the county level provided by the Federal Communication Commission7.
7The data is available at https://www.fcc.gov/general/broadband-deployment-data-fcc-form-477.
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The results reported in the first three columns of Panel A of Table 4 show that

the relative decline in deposits in the treated group is stronger in counties where

depositors show (plausibly) higher exposure to identity theft risk. We find that the

coefficient of Treated High Identity Theft Risk × Post is negative and significant across

all specifications and is statistically larger than the coefficient of Treated Low Identity

Theft Risk × Post. Furthermore, in the last three columns of Panel A, we observe that

decline in deposits for small banks after the cyberattacks is driven by depositors with

lower levels of digital literacy. The fact that the negative consequences of cyberattacks

on deposit growth are (primarily) driven by a higher exposure to identity theft risk

and by digitally unsophisticated depositors is then consistent with concerns over private

data losses as the main reason behind our findings.

3.3.2 Small Bank Risk and Depositor Response to Cyberattacks

Examining if there is heterogeneity in our results due to small bank risk can offer

further insights regarding the observed slowdown in deposit growth. More precisely,

if our results are due to concerns over the stability of hacked banks (and not due

to concerns over private information loss), we should observe that after a successful

cyberattack depositors should primarily withdraw deposits from riskier banks (e.g.

Martinez Peria and Schmukler, 2001).

We assess the validity of this argument in Panel B of Table 4. In the first three

columns of the Panel, we split treated small banks according to their riskiness (as

measured by the log of Z-score) the year before the cyberattacks8. We denote treated

banks to be riskier (less risky) if their Z-score is below (above) the median in the

year before the cyberattack. As observed, the coefficients on the interaction of the

post dummy with the two treated groups are similar and not statistically different.

The last three columns show similar results when riskier banks are defined as banks

jointly having NPL and Tier 1 ratios above (below) the sample median. The results of

We obtain similar results when we use estimates of the percentage of broadband subscriptions in a
county provided by Tolbert and Mossberger (2020).

8Z score is calculated as ROA plus the equity ratio divided by the standard deviation of ROA (that
we compute using a 3-year window prior to the cyber shock).
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these two tests suggest that the observed depositor reactions are unlikely a reflection

of concerns over bank risk.

In the Online Appendix we offer additional evidence against a risk interpretation

by sequentially interacting our vector of bank controls (Size, ROA, NPL, Tier 1, Loan,

Productivity) with Post. Our aim is to investigate if any change in bank characteristics

post-shock is significant in dampening the economic significance of Treated × Post. If

bank risk were crucial determinants of depositor reactions, we should observe significant

decreases in the economic significance of the coefficient Treated × Post after we control

for these variables. We do not find this to be the case: the coefficient on the interaction

of interest remains fairly stable throughout the different specifications. This indicates

that the expected evolution of bank risk is unlikely to be the reason for declines in

deposit growth rates in the group of hacked banks.

Therefore, our results are consistent with the observations of Kamiya et al. (2020),

showing that the direct out-of-pocket costs (e.g., investigation and remediation costs,

legal and regulatory penalties) resulting from cyberattacks only account for a small

proportion (approximately 1%) of the loss in market value. This implies that the

remaining value losses are due to damages to a firms’ reputation and a loss of trust.

3.3.3 Disentangling the two Explanations Using Household Borrowing

Data

An alternative empirical strategy to understand the drivers behind our key finding

is to focus on bank customers that are exposed to private information loss but not

necessarily to funding losses. In this respect, besides deposit markets, banks engage in

contractual relationships with households in mortgage markets. Indeed, cyberattacks

should not generally expose borrowers to funding risk but as depositors they will share

personal data with the lender. Accordingly, they are exposed to the loss of private

information. It follows that if our findings for the deposit markets are driven by

concerns about private data loss, we should also observe some negative effects on the

lending relationships of the hacked bank in the mortgage market.

We examine the consequences of cyberattacks in relation to mortgage lending in
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two steps. First, we take the perspective of mortgage applicants and test whether

potential borrowers shy away from banks that have suffered cyberattacks and whether

the characteristics of these borrowers change. If borrowers are concerned about the risk

of losing personal data, we should observe that less risky applicants that have more

market alternatives opt for other lenders. It follows that cyberattacks should result in

a decrease in the quality of applicants at affected small banks. Second, we analyze a

bank’s response to borrower behavior in terms of underwriting standards. To maintain

their market position, affected banks might be forced to approve riskier loans, resulting

in a deterioration of their lending standards.

We base our analysis on loan data from the Home Mortgage Disclosure Act

(HMDA) database collected by the Federal Financial Institutions Examination Council

(FFIEC)9. Each loan application in the HMDA dataset contains information on

borrower demographics, loan characteristics, the decision to grant or not the mortgage,

the geographical location of the property the year in which the loan application decision

is made, and the lender’s identifier. However, the HMDA data does not enable us to

track the loans submitted to individual branches. As such, our analysis is conducted

at the bank-county-year level.

We drop from our sample loan applications where the lender does not have a branch

in the county where the mortgage was originated because they are likely to be loans

that were submitted to independent mortgage brokers (Cortés, 2015). Given that our

initial tests focus on the response of potential borrowers of a bank that are located

in geographic proximity to where a cyberattack occurred, retaining these observations

would introduce noise to the analysis. We then aggregate HMDA loan-level variables

to the bank-county-year and estimate the following difference-in-differences model:

(4)Lendingi,z,t = α + β1Treated× Post + BANK + COUNTY×TIME
+ CONTROLSεi,z,t,

9HMDA is a loan-level dataset that covers all mortgage applications that have been reviewed by
qualified financial institutions, both private and public. HMDA requires an institution to disclose
any mortgage lending if it has at least one branch in any metropolitan statistical area and meets the
minimum size threshold. For instance, in 2010, this reporting threshold is $39 million in book assets.
The annual reporting criteria can be accessed at: https://www.ffiec.gov/hmda/reporterhistory.htm.
Due to the low reporting requirements, the HMDA dataset covers the majority of lenders and accounts
for nearly 90% of the U.S. mortgage market (Cortés et al., 2016).
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where Lending is one of the following variables 1)Num. Loans (the log

transformation of the total number of loans submitted in a bank-county-year); 2)

Submitted LTI (the average loan amount requested divided by the average income of

the applicant in a bank county-year); 3) Approval Rate (number of approved loans/total

loans submitted at the bank-county-year level); 4) Approved LTI (the bank-county-year

average of loan amount requested in approved loans/applicant income)10. The first two

variables, therefore, take the borrowers’ perspective while the remaining variables

The first two variables, therefore, take the borrowers’ perspective while the

remaining variables take the bank’s perspective. We use Loan-to-Income ratios as

a proxy for the riskiness of a borrower as higher ratios indicate a lower capacity of

borrowers to repay these loans, leading to higher borrower defaults (Campbell and

Cocco, 2015; Dell’Ariccia et al., 2012).

Our key explanatory variable is Post × Treated and measures the change in

one of the lending variables from the pre to the post shock period, as defined in

equation (1), in the group of treated banks compared to the control group. In all

specifications, we include a vector of controls consisting of borrower/loan control

variables such as Ln(Applicant Income), Avg Female, Avg Native American, Avg Asian,

Avg African-American, Avg Hawaiian Native, Avg Conventional, Avg FHA and Avg

VA. We provide detailed definitions of these variables in Table A2 in the Online

Appendix.

[TABLE 5 HERE]

Table 5 shows the results of our analysis. In columns (1) and (2), we do not find

evidence of an overall decline in the number of mortgage applications in the sample of

the affected banks compared to the control group. However, in columns (3) and (4) we

observe a relative increase in the Loan-to-Income ratio of submitted loans for banks

that have experienced a cyberattack. The results indicate, therefore, that small banks

are more likely to attract riskier borrowers subsequent to a cyberattack.
10We winsorize the variables Applicant Income and Loan Amount at the 5% tails to minimize

reporting errors.
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The results presented in columns (5) to (8), taking the lender’s perspective, suggest

that the approval rate of affected banks does not change. However, there is evidence of

an increase in the Loan-to-Income ratio of loans that have been approved. This increase

indicates that hacked banks are forced to relax their lending standards to maintain

approval rates. These results are consistent with the perspective that cyberattacks

matter for bank customers that are not exposed to funding losses.

4 Spillover Effects in Local Deposit Markets

Up to this point, our analysis does not consider the possibility of spillover effects within

local deposit markets. However, Kamiya et al. (2020) show negative spillovers at the

industry level after successful cyberattacks on non-financial firms. More generally, in

empirical settings involving companies operating in the same industry (and in the same

geographic markets as in our analysis), the assumption of no spillovers is not entirely

plausible. For instance, a broad theoretical banking literature highlights the presence

of spillovers in deposit markets by identifying conditions under which deposits are

withdrawn from banks affected by negative events and then reallocated towards other

banking firms (see, for instance, Egan et al., 2017; Farhi and Tirole, 2012).

In line with the above banking literature, the negative spillover dynamics

documented by Kamiya et al. (2020) for a sample of large listed firms are not necessarily

indicative of what we should observe within deposit markets after a cyberattack. In

particular, it is unlikely that depositors would perceive successful cyberattacks on small

banks as a signal of a wider industry cybersecurity problem with negative spillovers for

all other banks. Instead, under an “equilibrium framework” for local deposit markets,

and consistent with the reallocation mechanism highlighted by theoretical banking

studies, at least part of the withdrawn, or not-deposited funding, at hacked small

banks should flow towards other banks operating in the same local market.

In this respect, since our results are driven by depositors’ concerns about private

data loss due to cybersecurity deficiencies, the positive spillovers should primarily

favor banks that are seen as digitally and technologically safer by customers (e.g.
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Chen et al., 2017). Large banks should then be an obvious choice for depositors

given their financial capacity to comply with the continuous investments required

by cybersecurity. Additionally, the presence of positive spillovers in favor of large

banks would be consistent with the view that investment and innovation gaps between

competing firms generate a business stealing effect in favor of firms with an innovation

advantage and increase the risk of exit for less innovative firms (see, for instance, Bloom

et al., 2013; Klette and Kortum, 2004). By contrast, if any negative spillovers would

emerge, as in Kamiya et al. (2020), they are more likely to impact other (unaffected)

small banks as their cybersecurity environment might be perceived as similar to that

of hacked banks and as such equally vulnerable.

In the next two sections, we elaborate on the arguments above and test for two

different typologies of spillovers in local deposit markets: a) towards large banks

(that is, banks with total assets over $10bln) and; b) towards small banks (banks

below $10bln in terms of assets and not directly affected by the cyberattack). To

conduct these tests, we employ an identification strategy that compares the evolution

of deposits in the branches of untreated banks in counties where hacked banks operate

with the branches of the same untreated banks operating in adjacent counties (where

no branches of the hacked banks are present).

Our identification strategy is graphically presented in Figure 2, where we illustrate

examples of how we categorize local markets. The local markets in which treated

banks operate are illustrated in red and those markets in which hacked banks are

not present are illustrated in blue. More precisely, Figure 2a graphically clarifies our

empirical approach using the case of the cyberattack on Salem Five Savings Bank in

Massachusetts in 2016. This treated bank had branches in the counties of Middlessex

and Norfolk but not, for instance, in the counties of Worchester and Bristol. In the

spillover test, therefore, the branches of large (small) banks in Middlessex and Norfolk

are considered as indirectly treated whereas the branches in Worchester and Bristol

are categorized as untreated.

[FIGURE 1 HERE]
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By focusing on adjacent counties, we ensure that the two groups of branches

are likely to be affected by similar observable and unobservable economic and social

conditions (Huang, 2008). Furthermore, this empirical approach alleviates concerns

over omitted bank characteristics driving our results since treated and untreated

branches belong to the same group of banks.

4.1 Spillover Effects towards Large Banks

We start by focusing on spillovers towards larger banks. Panel A of Table 6 shows

that there is no evidence of trend differentials in deposit growth prior to the shock

between our treated (branches belonging to large banks in affected counties) and

control group (branches belonging to the same large banks but residing in adjacent

unaffected counties). This suggests that similar to our main analysis, the parallel

trends assumption is also likely to hold for this test.

The regression results, reported in Panel B of Table 6, indicate an increase in

the deposit growth rates at branches of large banks located in the counties affected

by cyberattacks compared to the branches of the same banks in unaffected adjacent

counties. The differential increase in deposit growth rates between the two groups of

branches is approximately equal to 15 percentage points. In summary, branches of large

banks are able to attract more deposits in local markets where small banks suffered

from a cyberattack. Therefore, our result indicates a “flight-to-reputation” effect in

local deposit markets associated with cyberattacks on small banks and is consistent

with the importance of depositor trust in relation to a bank’s ability to protect private

data (as established in our main analysis).

[TABLE 6 HERE]

To offer further support for the interpretation above, in Panel A of Table 7 we

repeat the large bank spillover test by separating our sample of indirectly “treated”

branches of large banks using the customer reputation score assigned to these banks

by the annual survey conducted by American Banker. We define banks ranked in
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the top 5 of the survey as having an exceptional reputation with their customers and

estimate the following model11:

(5)
Ln(Deposits)i,j,z,t = α + β1(Indirectly Treated High Reputation× Post)

+ β2(Indirectly Treated Low Reputation× Post)
+ BRANCH + COUNTY×TIME + εi,t,

If our results are driven by the search of large banks that offer better information

safety to their customers, we should observe that the positive spillovers primarily

benefit large banks with a higher customer reputation score. In line with this

expectation, we observe that positive spillovers are significantly larger for large banks

with exceptional reputation. The results further support an interpretation based on a

“flight-to-reputation” effect.

[TABLE 7 HERE]

It might be, however, suggested, that the reputation score of large banks correlates

with other bank characteristics that are driving our results. For instance, if large banks

with better reputation are also those considered to offer more stability and safety, what

we are capturing could be a “flight-to-safety” effect by depositors rather than a search

for information security. Indeed, previous studies argue that depositors can look for a

safe shelter to protect their savings, such as implicit government guarantees of large

and systemically important banks (Farhi and Tirole, 2012). To test more specifically

whether depositors seek out more systemically important banks, we identify globally

systemically important US banks on the basis of the ranking published from 2011 by

the Financial Stability Board. We then examine whether large banks being recognized

as more systemically important show more positive spillovers after a cyberattack. The
11American Banker surveys bank customers on their perception of bank reputation. As this survey

mainly covers large banks, we are unable to employ this test for our sample of small banks. Because
we only have survey data from 2010 to 2017, and our sample begins in 2005, we use the reputation
scores from 2010 for years 2005 to 2009. In Table A8 in the Online Appendix, we present the results
of our additional results based on the top 10 or 15 banks in terms of reputation. Our results and
conclusions remain unchanged.
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results presented in Panel B of Table 7, however, do not support this alternative

interpretation. We do not find this to be the case.

Ultimately, the positive spillovers we document in favor of large banks indicate

a business stealing effect against smaller banking firms that are perceived as less

competitive in terms of cybersecurity by depositors. This effect can be understood

in the context of theoretical models highlighting the competitive effects caused by

investment and innovation gaps among firms operating in the same market.

4.2 Spillover Effects towards Small Banks

Next, we examine spillovers to (untreated) small banks. We define the branches of

small banks in our initial control group as indirectly treated because they are located

in those counties where the hacked banks operate. The untreated group consists of the

branches of the same banks that reside in unaffected adjacent counties. As before, we

show in Panel A of Table 8 that the parallel trends assumption is likely to be plausible.

There are no differences in the dynamics of deposit growth in the treated and untreated

branches of small banks prior to the event.

[TABLE 8 HERE]

Panel B of Table 8 shows the regression results. Across all specifications, we find

no evidence that the growth rate of deposits at (indirectly) treated branches differs

significantly from the growth rate observed for untreated branches of the same small

banks. Therefore, there is no evidence that a cyberattack on a small bank has any

negative spillover effects on untreated small banks.

One potential explanation as to why we fail to detect a negative spillover in the full

sample of untreated small banks is that some of the existing and potential depositors

of these small banks are not sufficiently exposed to the shock affecting the hacked

banks. For instance, within a given county, some untreated small banks might operate

in local communities where hacked small banks do not operate branches. In these

communities, therefore, the awareness of the cyberattack for depositors might not be
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significant enough to raise widespread concerns over the cybersecurity of their own

small banks as it would be required by a negative spillover. Indeed, Iyer et al. (2016)

show that a depositor’s network is a key determinant of the spread of bank runs within

deposit markets. Additionally, Addoum et al. (2020) document that the bankruptcy of

one firm negatively affects lending spreads for geographically proximate solvent firms.

In a similar vein, Aharony and Swary (1996) show evidence of contagion for solvent

banks with headquarters in closer geographic proximity to failing banks’ headquarters,

while Pino and Sharma (2019) show that contagion within the US banking system

spreads locally12.

To understand if the explanation above is plausible and there is a geographic

proximity effect in terms of negative spillovers among small banks, we compute a

measure of branch overlaps between the hacked bank and each untreated small bank

based on ZIP codes. For each ZIP code, we count the overlaps in the branch network

between two banks and scale the number of overlaps by the total number of branches

of the untreated small bank. This measure, therefore, aims at capturing how closely

the existing, and potential, depositors of these untreated banks have been exposed to

the shock.

Next, indirectly treated small banks are sorted into high (low) degree of branch

network overlaps if they are above (below) the median values of the variables in the

year before a cyberattack. We then estimate a model similar to equation (4). We

report the results in Panel C of Table 8. We find some evidence of negative spillovers

for untreated small banks that share a high degree of branch overlaps with the hacked

banks; that is, in hacked counties the branches of these banks show a slowdown in

deposit growth after the cyberattacks compared to the branches operating in unhacked

counties. For the group of banks with low branch network overlaps, there is no evidence

of any spillover effect.

To summarize, while on average untreated small banks do not show any significant

changes in their deposit growth rates after cyberattacks, we find that the hack
12A related stream of the literature documents that the geographic distance between a firm and

its stakeholders decrease monitoring intensity and information collection incentives (Agarwal and
Hauswald, 2010; Chen et al., 2020).
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undermines the competitive positions of those small banks that have more geographic

similarity with the hacked banks. The presence of a geographic dimension of negative

spillovers from cyberattacks is in line with previous evidence on the local nature of

contagion effects within the US banking sector and for corporate borrowers.

5 Aggregate and Real Effects

We find that a successful cyberattack on a small bank results in deposit flows to larger

banks and, to some extent, a disadvantage for smaller unhacked banks that share

more geographic similarity in the branch network with the hacked bank. In the next

two sections, we provide evidence of the aggregate consequences that these market

dynamics generate within local banking markets.

5.1 Market Structure Effects

The results reported in Section 4 hold important implications for the market structure

of deposit markets. We find a shift in the competitiveness from small to large banks.

As a result, we should expect an increase in the aggregate market share of large banks

in these hacked local deposits markets.

[TABLE 9 HERE]

Along these lines, in Panel A of Table 9, we use our initial sample of treated

and control banks to estimate a bank-county level regression where we employ as a

dependent variable the deposit market share of each bank in a county. The coefficients

on Treated x Post indicate a decrease of approximately 1 percentage point in the

county market share of hacked small banks compared to small banks in the control

group. This decline is economically meaningful given that the average county market

share of a treated bank prior to cyberattacks is approximately 7.2%. In relative terms,

therefore, the market share of treated banks decreases by approximately 14%.
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In Panel B of Table 9, we assess the impact of the cyberattacks on the aggregate

market shares of large banks. We compare the market shares of large banks in counties

where hacked banks have branches and the market share in adjacent counties wherein

hacked banks are absent. We find that the market share of large banks has shown a

relative increase by about 3 percentage points.

5.2 Small Business Lending Effects

The growing influence of large banks in local deposit markets can also have implications

in terms of access to credit for small firms. Since large banks tend to be less inclined

to supply small business lending, especially in times of crises, local businesses could

face increasing financial frictions (Bord et al., 2018; Chen et al., 2017). Therefore,

the access to credit of (small) local businesses may deteriorate after a cyberattack,

negatively impacting the development of local economies (Berger et al., 2017; Hakenes

et al., 2015).

We test the validity of the argument above by relying on small business lending data

based on the Community Reinvestment Act (CRA). This dataset offers the possibility

to construct county-based measures of small business loans by aggregating information

available at the bank level. Small business loans are defined as loans with a value lower

than 1$ million.

To understand if the effects of cyberattacks have implications on small business

lending, we compare the evolution of the log transformation of small business loans in

the group of treated counties (that is, counties where we have at least one branch

of small hacked banks) and the group of adjacent counties where these banks do

not operate any branches. The matching between the treated counties and adjacent

counties reduces concerns over omitted demand factors that can affect the evolution

of small business lending. However, it is unlikely that it is sufficient to fully remove

these concerns. We therefore take additional steps to remove the contamination effects

coming from the demand side.

First, in all specifications, in addition to county fixed effects, we include the lag

values of the number of small business loans granted in the previous year as a proxy for
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the number of potential small customers. Second, in additional specifications we include

lag values of county macro controls such as the GDP growth rate the log transformation

of the unemployment rate and the growth rate of the number of establishments.

[TABLE 10 HERE]

The results reported in Panel A of Table 10 for the log transformation of total loans

with a value lower than 1$ million offer some weak evidence of a decline in loan growth

after a cyberattack. One possible explanation for this weak result is that our loan

aggregate includes borrowers with heterogenous size that are not necessarily treated

equally by large banks within the local banking market. We progress, therefore, by

focusing on a tighter definition of small borrowers based on loans granted with a value

lower than 250,000$. We then compare the results of this aggregate with the findings

for larger loans (from 250,000$ up to 1$ million). The results reported in Panel B and

C of Table 7 show some degree of heterogeneity across loan size groups, with only the

very small borrowers suffering from a decline in the growth rate of the amount granted

by local banks after the cyberattack.

Ultimately, our results are consistent with existing evidence on the importance of

small banks in alleviating financial constraints of small firms (see, for instance, Berger

et al., 2017). We find evidence of broad market-wide effects subsequent to cyberattacks

on small banks, leading to a reduced competitiveness of these banks and a decrease in

the growth of small business lending. This decrease is driven by the provision of loans

to very small borrowers.

6 Conclusion

Cybersecurity is a rising concern for regulators and bankers. Unlike large banks with

a wide range of human and financial resources to strengthen their IT infrastructure,

small banks are more susceptible to cyberattacks. Indeed, CEOs of small community

banks have indicated that cyber risks are a major threat to their business (Conference
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of State Bank Supervisors, 2019). In this paper, we document the validity of this view

by identifying the negative business consequences for small banks after cyberattacks

and the observed follow-on spillover effects on the distribution of deposits across banks

in local markets.

We show that the branches of small banks affected by cyberattacks experience a

significant slowdown in the growth rate of their deposits compared to branches of

unaffected similarly sized banks. We contrast two possible explanations for the effects

we document. The first emphasizes the importance depositors assign to the ability of

banks to protect private information. The second focuses on the potential funding loss

for depositors due to broader concerns about bank stability highlighted by successful

data breaches. Our findings validate the first interpretation. In particular, we show

that the negative effects for hacked banks are more pronounced when depositors are

likely to be more exposed to identity theft or have less digital knowledge, do not depend

on small bank risk and extend to relationships with bank customers that are exposed

to information loss but not the risk of loss of savings.

We next document that cyberattacks generate positive deposit spillovers to branches

of unaffected large banks, operating in geographically proximate locales, as well as

negative spillovers to small banks that have more branch overlaps with the hacked

bank. Additionally, in response to the cyberattacks, depositors opt for large banks

with high customer reputation but are not influenced by the implicit bailout guarantees

of these banks. In other words, cyberattacks lead to a “flight-to-reputation” effect as

larger, more reputable banks are likely to be seen by depositors as more secure against

cyberattacks. The described effects result in a growing market share of large banks

and a loss of competitive of small banks in local deposit markets. Not surprisingly,

therefore, we document that the market-wide consequences of cyberattacks reduce

access to credit for very small borrowers.

Ultimately, our study highlights the need for sectorial cybersecurity initiatives

that can complement and support small bank-specific investments in cybersecurity

strategies. Yet, equally important appear initiatives to increase depositor awareness of

cybersecurity and the implementation of cost recovery options to reduce the negative
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reputational effects arising from cyberattacks on small banks.
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Figure 1
Evolution of deposits in the pre-shock period

This figure plots the trend in Ln(Deposits) for branches of treated and untreated banks in the 3-year period before
the cyberattack. We estimate and plot Ln(Deposits) using a linear model that accounts for branch and county fixed
effects and bank controls (Size, ROA, Tier 1, NPL, Loans and Productivity). Size is measured as the logarithmic
transformation of bank total assets in thousands of US$. ROA is the ratio between net income and total assets, Tier 1
is total tier 1 capital divided by risk weighted assets, NPL is the fraction of non-performing loans with respect to total
loans, Loans is constructed as total loans divided by total assets and Productivity is defined as the ratio between total
assets and the number of employees.
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Figure 2
Graphic Representation of the Spillover Analysis

(a) Massachusetts (b) Kansas

(c) Texas (d) North Carolina

This figure graphically illustrates examples of the treated (in red) and untreated (in blue) counties for our spillover
analysis. Treated counties in red are where untreated large (small) banks operate (our original control group). Untreated
blue counties are adjacent counties where branches of the same untreated large (small) banks operate. Part (a)
graphically illustrates the spillover analysis for the cyberattack of Salem Five Savings Bank in Massachusetts in 2016.
This treated bank had branches in the counties of Middlessex and Norfolk but not, for instance, in the counties of
Worchester and Bristol. In the spillover test, Middlessex and Norfolk are still treated counties whereas Worchester and
Bristol are categorized as untreated counties. In a similar way, Part (b) illustrates the cyberattack of Commerce Bank
in Kansas in 2007, Part (c) shows the cyberattack of OmniAmerican Bank in Texas in 2008 and Part (d) displays the
cyberattack on Security Savings Bank in North Carolina in 2006.
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Table 1
Descriptive Statistics and Parallel Trends

The table below reports descriptive statistics and tests of the parallel trend assumption for our sample of cyberattacks
on small banks. Cyberattacks are identified using the breach classification "HACK" by Privacy Rights Clearinghouse
(PRC). Panel A provides descriptive statistics of the main variables used in the analyses. Ln(Deposits) is the logarithmic
transformation of deposits in thousands of US$. Size is measured as the logarithmic transformation of bank total assets
in thousands of US$. ROA is the ratio between net income and total assets, Tier 1 is total tier 1 capital divided by risk
weighted assets, NPL is the fraction of non-performing loans with respect to total loans, Loans is constructed as total
loans divided by total assets and Productivity is defined as the ratio between total assets and the number of employees.
Panel B reports a comparison of the characteristics of treated and control branches and treated and untreated banks
in the year prior to a cyberattack. Columns (2) and (3) present the average values of our dependent variable and bank
controls while column (4) reports the normalized differences in branch and bank characteristics between the two groups.
Panel C reports the results of a logit model for the pre-shock period. The dependent variable is an indicator variable
equal to one if a bank was subsequnetly hacked; and zero otherwise. Panel D reports the average one-year change
in the dependent variable across the two groups of branches in each of the 3 years preceding the cyberattack. The
average values are reported in column (1) and (2). The differences in average values are reported in column (3) while
column (4) reports T-tests on differences in the average values. Standard errors given in parentheses are corrected for
heteroskedasticity and bank-level clustering. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.

Panel A Descriptive Statistics
Obs. Mean Median SD 25th 75th
(1) (2) (3) (4) (5) (6)

Ln(Deposits) 15,460 10.080 10.601 2.316 9.709 11.247
Hack 15,460 0.199 0.000 0.399 0.000 0.000
Post 15,460 0.453 0.000 0.498 0.000 1.000
Size 15,334 14.821 14.905 0.969 14.212 15.556
ROA 14,730 0.010 0.009 0.008 0.007 0.013
NPL 14,730 0.012 0.007 0.018 0.003 0.013
Tier 1 14,730 0.134 0.117 0.052 0.103 0.149
Loan 15,082 0.651 0.670 0.144 0.561 0.760
Productivity 15,080 5.348 4.783 2.930 3.197 6.741
Panel B Pre-Shock Characteristics

Normalized
N Treated (A) Untreated (B) Diff. (A-B) T-test (A-B)
(1) (2) (3) (4) (5)

Ln(Deposits) 2,328 10.095 10.038 -0.024 0.6436
Size 243 13.986 13.727 -0.129 0.4627
ROA 243 0.002 0.002 0.003 0.7818
NPL 243 0.014 0.016 0.109 0.6119
Tier 1 243 0.139 0.156 0.195 0.3867
Loan 242 0.661 0.674 0.069 0.7274
Productivity 231 4.823 5.641 0.248 0.2655
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Table 1 (cont.)
Descriptive Statistics and Parallel Trends

Panel C Pre-Shock determinants of becoming a target
Ln(Deposits)

(1) (2) (3)
Ln(Deposits) 0.006 0.007 0.012

(0.012) (0.021) (0.036)
ROA -0.415 0.359

(1.808) (2.859)
NPL -0.042 -0.198

(0.584) (0.564)
Tier 1 -0.093 -0.038

(0.233) (0.265)
Loan -0.075 -0.027

(0.136) (0.134)
Productivity -0.009 -0.010

(0.005) (0.009)
County FE No No Yes
Observations 196 189 189
Adjusted R2 0.00 0.01 0.01
Panel D Parallel Trends

Treated (A) Untreated (B) Diff. (A-B) T-value
(1) (2) (3) (4)

∆ Ln(Deposits)t−3 0.085 0.092 -0.007 0.826
∆ Ln(Deposits)t−2 0.080 0.121 -0.041 0.190
∆ Ln(Deposits)t−1 0.143 0.143 0.000 0.999
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Table 2
Do Depositors Respond to Cyberattacks?

The table below reports difference-in-differences regression results of cyberattacks on small banks. Cyberattacks
are identified using the breach classification "HACK" by Privacy Rights Clearinghouse (PRC). Ln(Deposits) is the
logarithmic transformation of the branch-level deposits in US dollar. Panel A shows the results of a univariate
difference-in-differences analysis to estimate the average treatment effect. The T-test of equality of means compares
the average difference in Ln(Deposits) between the post and the pre-event period for groups of treated and untreated
branches and then test whether these differences significantly differ between the two groups. Panel B reports the
results of a multivariate analysis (based on equation (1)). Treated is a dummy that equals one if a branch belongs
to a hacked bank and zero otherwise; Post is a dummy equal to one in the post-shock window (up to 3 years after
the shock). The difference-in-differences estimate of the coefficient of Treated x Post is the difference between how
the dependent variable changes in the branches of treated banks (namely, banks affected by a cyberattack) and in the
branches of control banks after the shock. Size is measured as the logarithmic transformation of bank total assets in
thousands of US$. ROA is the ratio between net income and total assets, Tier 1 is total tier 1 capital divided by risk
weighted assets, NPL is the fraction of non-performing loans with respect to total loans, Loans is constructed as total
loans divided by total assets and Productivity is defined as the ratio between total assets and the number of employees.
All models include branch and county × year fixed effects. Standard errors are clustered at the bank-level and are
reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.

Panel A Ln(Deposits)

Treated Untreated Diff-in-diff
(1) (2) (3)

Average Diff. Pre-Post 0.163∗∗ 0.371∗∗∗ -0.209∗∗∗
T-value (3.734) (18.140) (4.490)
Panel B Ln(Deposits)

(1) (2) (3)
Treated × Post -0.250∗∗∗ -0.241∗∗∗ -0.216∗∗∗

(0.086) (0.084) (0.077)
Size 0.062 0.080

(0.066) (0.085)
ROA 3.547

(3.547)
NPL 1.218

(1.200)
Tier 1 -0.026

(0.597)
Loan -0.132

(0.229)
Productivity 0.001

(0.017)
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 15460 15334 14382
Adjusted R2 0.935 0.936 0.936
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Table 4
What Drives the Depositor Response?

The table below reports difference-in-differences regression for heterogeneity in depositor responses to cyber attacks
on small banks. Cyberattacks are identified using the breach classification "HACK" by Privacy Rights Clearinghouse
(PRC). Ln(Deposits) is the logarithmic transformation of the branch-level deposits in US dollar. Heterogenous
depositor responses are measured according to depositors’ exposure to identify theft risk and digital sophistication
and to small bank risk. In Panel A, we report results for identify theft and digital sophistication. To account for
the exposure of depositors to the risk of identity theft, we rely on data from the Federal Trade Commission (FTC).
The FTC offers data on number of consumer complaints per 100,000 population related to identity theft in each
metropolitan statical area (MSA). Digital sophistication is measured using data from Form 477 on internet access
connections per thousands of households at the county level, provided by the Federal Communication Commission. In
Panel B, we report results for small bank risk. First, we identify riskier firms using the log of the Z-score in the year
before the cyberattack. Those firms with Z-score above (below) the sample median are considered more (less) risky.
In a second step, we define those banks as riskier (less risky) that jointly have NPL and Tier 1 rations above (below)
the sample median. As indicated above, in both Panels banks are sorted into high (low) groups if they are above
(below) the median in respect to each variable. Treated is a dummy that equals one if a branch belongs to a hacked
bank and zero otherwise; Post is a dummy equal to one in the post-shock window (up to 3 years after the shock).
The difference-in-differences estimate of the coefficient of Treated (High) Low x Post is the difference between how
the dependent variable changes in the branches of treated banks in counties with high (low) digital literacy (namely,
banks affected by a cyberattack) and in the branches of control banks after the shock. Bank controls include: Size,
ROA, NPL, Tier 1, Loan and Productivity. Size is measured as the logarithmic transformation of bank total assets
in thousands of US$. ROA is the ratio between net income and total assets, Tier 1 is total tier 1 capital divided by
risk weighted assets, NPL is the fraction of non-performing loans with respect to total loans, Loans is constructed as
total loans divided by total assets and Productivity is defined as the ratio between total assets and the number of
employees. Variable definitions, details on the construction of variables and sources are provided in Table A2 in the
Online Appendix. All models include branch and county × year fixed effects. Standard errors are clustered at the
bank-level and are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.

Panel A Identity Theft Digital Sophistication

Ln(Deposits) Ln(Deposits)

(1) (2) (3) (4) (5) (6)
Treated High × Post -0.446∗∗∗ -0.438∗∗∗ -0.402∗∗∗ -0.063 -0.058 -0.050

(0.103) (0.102) (0.095) (0.039) (0.041) (0.044)
Treated Low × Post -0.108∗∗ -0.104∗∗ -0.096∗∗ -0.521∗∗∗ -0.514∗∗∗ -0.481∗∗∗

(0.045) (0.046) (0.048) (0.098) (0.098) (0.095)
Size Control No Yes Yes No Yes Yes
Other Bank Controls No No Yes No No Yes
Branch FE Yes Yes Yes Yes Yes Yes
County x Year FE Yes Yes Yes Yes Yes Yes
High-Low -0.452∗∗∗ -0.449∗∗∗ -0.405∗∗ -0.459∗∗∗ -0.456∗∗∗ -0.431∗∗∗
Observations 15460 15334 14382 15460 15334 14382
Adjusted R2 0.935 0.936 0.936 0.936 0.936 0.937
Panel B Ln(Z-score) NPL & Tier 1

Ln(Deposits) Ln(Deposits)

(1) (2) (3) (4) (5) (6)
Treated Hack High Risk × Post -0.236∗∗ -0.221∗∗ -0.191∗∗ -0.377∗∗ -0.372∗∗ -0.365∗∗

(0.097) (0.094) (0.081) (0.174) (0.175) (0.174)
Treated Hack Low Risk × Post -0.278∗ -0.264∗ -0.256∗ -0.381∗∗∗ -0.370∗∗∗ -0.321∗∗∗

(0.141) (0.141) (0.143) (0.116) (0.114) (0.102)
Size Control No Yes Yes No Yes Yes
Other Bank Controls No No Yes No No Yes
Branch FE Yes Yes Yes Yes Yes Yes
County x Year FE Yes Yes Yes Yes Yes Yes
High-Low 0.042 0.044 0.066 0.038 0.034 -0.015
Observations 15400 15274 14334 14328 14202 13272
Adjusted R2 0.935 0.936 0.936 0.935 0.935 0.936
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Table 6
Cyberattacks and the Reallocation of Bank Deposits

The table below reports difference-in-differences regression results for spillover effects following cyberattacks on small
banks. Cyberattacks are identified using the breach classification "HACK" by Privacy Rights Clearinghouse (PRC).
Ln(Deposits) is the logarithmic transformation of the branch-level deposits in US dollar. The table presents tests for
large bank spillovers. To test for the presence of spillover effects, we compare the evolution of deposits in the branches
of untreated banks in the counties where the affected banks operate to the branches of the same untreated banks
operating in adjacent counties (where no cyberattacks have occurred). In Panels A and B, Treated is a dummy that
equals one if a branch belongs to a small bank that has not been hacked operating in counties where small banks have
been hacked; Treated is a dummy that equals zero (the control group) if it belongs to branches of the same unhacked
small banks that operate in adjacent counties (where no cyberattacks have occurred). Post is a dummy equal to one in
the post-shock window (up to 3 years after the shock). Panels A provides an analysis of potential trend differentials
in deposit growth prior to the shock between the treated and the control group for the spillover model. It reports the
average one-year change in the dependent variable across the respective two groups of branches in each of the 3 years
preceding the cyberattack. The average values are reported in column (1) and (2). The differences in average values
are reported in column (3) while column (4) reports T-tests of statistical significance on differences in the average
values. Panel B formally examines spillovers to large banks. The difference-in-differences estimate of the coefficient of
Treated × Post is the difference between how the dependent variable changes in the branches of treated banks (large
unaffected banks and small unaffected banks) and in the branches of control banks (branches belonging to the large
unaffected banks and small banks operating in unaffected adjacent counties) after the shock. Bank controls include:
Size, ROA, NPL, Tier 1, Loan and Productivity. Variable definitions, details on the construction of variables and
sources are provided in Table A2 in the Online Appendix. All models include branch and county × year fixed effects.
Standard errors are clustered at the bank-level and are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical
significance at the 1%, 5% and 10% levels.

Panel A Parallel Trends
Treated (A) Untreated (B) Diff. (A-B) T-value

(1) (2) (3) (4)

∆ Ln(Deposits)t−3 0.075 0.072 0.003 0.733
∆ Ln(Deposits)t−2 0.078 0.078 -0.001 0.956
∆ Ln(Deposits)t−1 0.093 0.102 -0.009 0.317
Panel B Large Bank Spillover

Ln(Deposits)

(1) (2) (3)
Treated × Post 0.150∗∗ 0.150∗∗ 0.152∗∗

(0.057) (0.058) (0.067)
Size Control No Yes Yes
Other Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 37603 37587 34696
Adjusted R2 0.897 0.898 0.904
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Table 7
Cyberattacks and the Reallocation of Bank Deposits

The table below reports difference-in-differences regression results for spillover effects following cyberattacks on small
banks. Cyberattacks are identified using the breach classification "HACK" by Privacy Rights Clearinghouse (PRC).
Ln(Deposits) is the logarithmic transformation of the branch-level deposits in US dollar. The difference-in-differences
estimate of the coefficient of Treated × Post is the difference between how the dependent variable changes in the
branches of treated banks (large unaffected banks and small unaffected banks) and in the branches of control banks
(branches belonging to the large unaffected banks in adjacent counties) after the shock. More specifically, Panel A
reports heterogeneous depositor results for a measure constructed to capture the reputation of large banks. The Top
5 Reputation score is based on information provided by bank customer on the reputation of banks conducted by
American Banker. Treated banks are sorted into Top 5 (Non-Top 5) Reputation groups if they are ranked in the Top 5
(not in the Top 5) of the survey (Treated Hack Hack Top 5 (Non-Top 5) Reputation). Panel B reports heterogeneous
depositor results for a measure constructed to capture the systemic importance of large banks in relation to deposit
flows. The TBTF measure is based on the List of Global Systemically Important Banks (G-SIBs) published by the
Financial Stability Board (FSB). Treated banks are those that appear on the lists published by the FSB on an annual
basis since 2011. Bank controls include: Size, ROA, NPL, Tier 1, Loan and Productivity. Variable definitions, details
on the construction of variables and sources are provided in Table A2 in the Online Appendix. All models include
branch and county × year fixed effects. Standard errors are clustered at the bank-level and are reported in parentheses.
∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.

Panel A Large Bank Spillover Reputation
Ln(Deposits)

(1) (2) (3)
Treated Top 5 Reputation × Post 0.374∗∗∗ 0.398∗∗∗ 0.417∗∗∗

(0.108) (0.112) (0.117)
Treated Non-Top 5 Reputation × Post 0.147∗∗ 0.147∗∗ 0.149∗∗

(0.056) (0.057) (0.066)
Size Control No Yes Yes
Other Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
High-Low 0.227∗∗∗ 0.251∗∗∗ 0.268∗∗∗
Observations 37603 37587 34696
Adjusted R2 0.897 0.898 0.904
Panel B Large Bank Spillover Systemic Risk

Ln(Deposits)

(1) (2) (3)
Treated TBTF × Post 0.158∗∗ 0.160∗∗ 0.137∗

(0.079) (0.080) (0.071)
Treated Non-TBTF × Post 0.143∗∗ 0.141∗∗ 0.170∗∗

(0.065) (0.066) (0.080)
Size Control No Yes Yes
Other Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
High-Low 0.015 0.019 -0.034
Observations 37603 37587 34696
Adjusted R2 0.897 0.898 0.904
l
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Table 8
Cyberattacks and the Reallocation of Bank Deposits

The table below reports difference-in-differences regression results for spillover effects following cyberattacks on small
banks. Cyberattacks are identified using the breach classification "HACK" by Privacy Rights Clearinghouse (PRC).
Ln(Deposits) is the logarithmic transformation of the branch-level deposits in US dollar. The table presents tests for
small bank spillovers. To test for the presence of spillover effects, we compare the evolution of deposits in the branches
of untreated banks in the counties where the affected banks operate to the branches of the same untreated banks
operating in adjacent counties (where no cyberattacks have occurred). In Panels A to C, Treated is a dummy that
equals one if a branch belongs to a small bank that has not been hacked operating in counties where small banks have
been hacked; Treated is a dummy that equals zero (the control group) if it belongs to branches of the same unhacked
small banks that operate in adjacent counties (where no cyberattacks have occurred). Post is a dummy equal to one in
the post-shock window (up to 3 years after the shock). Panels A provides an analysis of potential trend differentials
in deposit growth prior to the shock between the treated and the control group for the spillover model. It reports the
average one-year change in the dependent variable across the respective two groups of branches in each of the 3 years
preceding the cyberattack. The average values are reported in column (1) and (2). The differences in average values
are reported in column (3) while column (4) reports T-tests of statistical significance on differences in the average
values. Panel B formally examines spillovers to small banks. The difference-in-differences estimate of the coefficient of
Treated x Post is the difference between how the dependent variable changes in the branches of treated banks (large
unaffected banks and small unaffected banks) and in the branches of control banks (branches belonging to the large
unaffected banks and small banks operating in unaffected adjacent counties) after the shock. To better understand the
drivers of the depositor response, we test for heterogeneity in the spillover effect in Panel C. We compute a measure of
branch overlaps between the hacked bank and each untreated small bank based on ZIP codes. For each ZIP code, we
count the overlaps in the branch network between two banks and scale the number of overlaps by the total number of
branches of the untreated small bank. We sort treated small banks into high (low) degree of branch network overlaps if
they are above (below) the median values of the variables in the year before a cyberattack. The difference-in-differences
estimate of the coefficient of Treated (High) Low x Post is the difference between how the dependent variable changes
in the branches of treated banks in counties with high (low) digital literacy (namely, banks affected by a cyberattack)
and in the branches of control banks after the shock. Bank controls include: Size, ROA, NPL, Tier 1, Loan and
Productivity. Variable definitions, details on the construction of variables and sources are provided in Table A2 in the
Online Appendix. All models include branch and county × year fixed effects. Standard errors are clustered at the
bank-level and are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.

Panel A Parallel Trends
Treated (A) Untreated (B) Diff. (A-B) T-value

(1) (2) (3) (4)

∆ Ln(Deposits)t−3 0.097 0.095 0.002 0.845
∆ Ln(Deposits)t−2 0.092 0.094 -0.002 0.852
∆ Ln(Deposits)t−1 0.072 0.087 -0.014 0.104
Panel B Small Bank Spillover

Ln(Deposits)

(1) (2) (3)
Treated × Post 0.028 0.024 0.023

(0.053) (0.054) (0.055)
Size Control No Yes Yes
Other Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 32165 31756 29539
Adjusted R2 0.921 0.925 0.931
Panel C Small Bank Spillover Branch Overlap

Ln(Deposits)

(1) (2) (3)
Treated High Branch Overlap × Post -0.154∗∗∗ -0.180∗∗∗ -0.245∗∗∗

(0.039) (0.044) (0.065)
Treated Low Branch Overlap × Post -0.024 -0.017 -0.026

(0.086) (0.087) (0.096)
Size Control No Yes Yes
Other Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
High-Low 0.130 0.163∗ 0.219∗
Observations 32165 31756 29539
Adjusted R2 0.921 0.925 0.931
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Table 9
Market share and local market concentration

The table below reports two sets of difference-in-differences analyses concerning cyberattacks on small banks at the
bank-county level. Cyberattacks are identified using the breach classification "HACK" by Privacy Rights Clearinghouse
(PRC). In Panel A, Ln(Deposits) is the logarithmic transformation of the total amount of deposits aggregated at the
bank-county level. In Panel B, the aggregate market share is the deposit market share of each large bank in our sample
in a given county. Treated is a dummy that equals one if a bank belongs to the treated group and zero otherwise; Post is
a dummy equal to one in the post-shock window (up to 3 years after the shock). The difference-in-differences estimate
of the coefficient of Treated × Post is the difference between how the dependent variable changes in treated banks
(namely, banks affected by a cyberattack) and the control banks after the shock. Panel A takes the perspective of the
affected bank. Size is the logarithmic transformation of bank total assets in thousands of US$. Return on assets is the
ratio between net income and total assets (ROA), tier 1 capital ratio is defined as total tier 1 capital divided by risk
weighted assets (Tier 1), non-performing loans is defined as the fraction of non-performing loans with respect to total
loans is a proxy for credit risk (NPL), loan is total loans divided by total assets (Loan) and productivity is defined as
the ratio between total assets and the number of employees (Productivity). In Panel B, we explicitly consider economic
drivers of deposit growth at the county level. In this specification we control for the following economic controls:
GDP is the growth rate of the county-level gross domestic product, Unemployment is the natural logarithm of the
unemployment rate at the county-level, Establishments is the growth rate in the number of establishments. All models
include branch and county × year fixed effects. Standard errors given in parentheses are corrected for heteroskedasticity
and county-level clustering. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.

Panel A Bank-County Market Share
Deposit market share

(1) (2) (3)
Treated × Post -0.014∗∗∗ -0.011∗∗∗ -0.011∗∗∗

(0.002) (0.002) (0.002)
Size Control No Yes Yes
Other Bank Controls No No Yes
Bank FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 2710 2679 2502
Adjusted R2 0.937 0.947 0.952
Panel B Aggregate Market Share (>10Bln)

Deposit market share

(1) (2) (3)
Treated × Post 0.030∗∗ 0.030∗∗ 0.032∗∗

(0.013) (0.013) (0.013)
GDPt−1 0.021 0.016

(0.021) (0.024)
Unemploymentt−1 -0.045∗∗

(0.021)
Establishmentst−1 0.106

(0.080)
County FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 1357 1357 1200
Adjusted R2 0.960 0.960 0.964
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Table 10
Small Business Lending

The table below reports two sets of difference-in-differences analyses concerning cyberattacks on small banks at the
bank-county level. Cyberattacks are identified using the breach classification "HACK" by Privacy Rights Clearinghouse
(PRC). We test whether cyberattacks have an impact on the access to credit of (small) local businesses. We rely on
small business lending data based on the Community Reinvestment Act (CRA). This dataset offers the possibility
to construct county-based measures of small business loans by aggregating information available at the bank level.
Small business loans are defined as loans with a value lower than 1$ million. In Panel A, we report results on the
log transformation of total loans originated with a value lower than 1$ million. In Panel B and Panel C, we focus on
a tighter definition of small borrowers based on loans granted with a value lower than 250,000$ and loans granted
with a value from 250,000$ up to 1$ million respectively. Within all specification we control for the number of loans
granted (Ln(Number of Loans)). We also control for several economic factors such as: GDP is the growth rate of
the county-level gross domestic product, Unemployment is the natural logarithm of the unemployment rate at the
county-level, Establishments is the growth rate in the number of establishments. All models include branch and
county × year fixed effects. Standard errors given in parentheses are corrected for heteroskedasticity and county-level
clustering. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.

Panel A Ln(Loans Originated)

(1) (2) (3)
Treated × Post -0.045∗ -0.045∗ -0.033

(0.024) (0.024) (0.024)
Ln(Number of Loans)t−1 1.177∗∗∗ 1.178∗∗∗ 1.185∗∗∗

(0.079) (0.079) (0.084)
GDPt−1 -0.049 -0.083

(0.092) (0.100)
Unemploymentt−1 -0.109

(0.067)
Establishmentst−1 0.275

(0.262)
County FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 1354 1354 1197
R2 0.992 0.992 0.992
Panel B Ln(Loans Originated <250k)

(1) (2) (3)
Treated × Post -0.057∗∗∗ -0.057∗∗∗ -0.055∗∗∗

(0.019) (0.019) (0.019)
Ln(Number of Loans)t−1 1.179∗∗∗ 1.180∗∗∗ 1.196∗∗∗

(0.058) (0.058) (0.062)
GDPt−1 -0.041 -0.055

(0.061) (0.068)
Unemploymentt−1 -0.028

(0.054)
Establishmentst−1 0.410∗∗∗

(0.151)
County FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 1354 1354 1197
R2 0.995 0.995 0.995
Panel C Ln(Loans Originated >250k and <1M)

Treated × Post -0.043 -0.042 -0.011
(0.039) (0.039) (0.038)

Ln(Number of Loans)t−1 1.096∗∗∗ 1.099∗∗∗ 1.041∗∗∗
(0.139) (0.141) (0.140)

GDPt−1 -0.142 -0.202
(0.211) (0.208)

Unemploymentt−1 -0.264∗∗
(0.106)

Establishmentst−1 -0.140
(0.468)

County FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 1322 1322 1168
R2 0.973 0.973 0.975
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Online Appendix

Table A1: Sample Description
Table A2: Variable Descriptions
Table A3: Tighter Size Matching
Table A4: Bank Risk
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Table A1
Sample Description

The table below provides a description of the 16 cyberattacks on small banks used in the analyses. Cyberattacks are
identified using the breach classification "HACK" by Privacy Rights Clearinghouse (PRC). Column (2) provides the
date that the cyberattack was reported. Column (3) displays the RSSDID of the bank. Column (4) shows assets size
(in millions USD) the year before the hack. Column (5) provides the state in which the cyberattack occurred. For each
affected State, Column (6) reports the number of counties in which affected banks operate branches. The information
on bank size is from the Summary of Deposits (SOD).
ID Report Date RSSDID Assets (t-1) Affected State Affected Counties
(1) (2) (3) (4) (5) (6)
1 May 19, 2006 682563 9595562 Texas 17
2 May 25, 2006 853372 313698 North Carolina 3
3 November 20, 2006 181758 52180 Louisiana 2
4 May 21, 2007 174572 3683951 New Jersey 10
5 October 10, 2007 500050 1293771 Kansas 4
6 January 24, 2008 975984 1021318 Texas 3
7 June 10, 2008 991340 3509342 Indiana 8 (10)
8 August 28, 2008 816603 2395586 Rhode Island 3 (4)
9 September 10, 2008 621076 321851 Ohio 1
10 January 12, 2010 799612 1569436 New York 1
11 November 16, 2010 616193 124537 New Hampshire 1 (2)
12 January 31, 2013 997847 278904 Wisconsin 1
13 July 17, 2014 790534 2471993 Florida 1
14 January 4, 2016 618807 3517028 Massachusetts 4 (5)
15 January 12, 2016 119779 745395 Massachusetts 1
16 January 12, 2016 128904 8803622 Massachusetts 7 (11)
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Table A3
Tighter Size Matching

The table below reports difference-in-differences regression results of cyberattacks on small banks using a tighter size
match. Cyberattacks are identified using the breach classification "HACK" by Privacy Rights Clearinghouse (PRC).
Ln(Deposits) is the logarithmic transformation of the branch-level deposits in US dollar. Banks are divided into quartiles
within two size bins; the first size bin are banks up to $1bln and the second size bin are banks from $1bln to $10bln.
For instance, the first quartile of the first (second) size bin goes up to $250mln ($2.5bln). We then match banks in
the treated group with untreated banks falling in the same quartile within each size bin. Treated is a dummy that
equals one if a branch belongs to a hacked bank and zero otherwise; Post is a dummy equal to one in the post-shock
window (up to 3 years after the shock). The difference-in-differences estimate of the coefficient of Treated x Post is the
difference between how the dependent variable changes in the branches of treated banks (namely, banks affected by a
cyberattack) and in the branches of control banks after the shock. Bank controls include: Size, ROA, NPL, Tier 1, Loan
and Productivity. Size is measured as the logarithmic transformation of bank total assets in thousands of US$. ROA is
the ratio between net income and total assets, Tier 1 is total tier 1 capital divided by risk weighted assets, NPL is the
fraction of non-performing loans with respect to total loans, Loans is constructed as total loans divided by total assets
and Productivity is defined as the ratio between total assets and the number of employees. Variable definitions, details
on the construction of variables and sources are provided in Table A2 in the Online Appendix. All models include
branch and county × year fixed effects. Standard errors are clustered at the bank-level and are reported in parentheses.
∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.

Tighter Size Matching
Ln(Deposits)

(1) (2) (3)
Treated × Post -0.327∗∗∗ -0.302∗∗∗ -0.274∗∗∗

(0.097) (0.090) (0.087)
Size Control No Yes Yes
Other Bank Controls No No Yes
Branch FE Yes Yes Yes
County x Year FE Yes Yes Yes
Observations 4152 4149 3989
R2 0.965 0.965 0.965
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Table A4
Can Bank Risk Explain the Depositor Response?

The table below reports difference-in-differences regression for heterogeneity in depositor responses to cyber attacks
on small banks. Cyberattacks are identified using the breach classification "HACK" by Privacy Rights Clearinghouse
(PRC). Ln(Deposits) is the logarithmic transformation of the branch-level deposits in US dollar. Heterogenous depositor
responses are measured and conditional on two measures of bank risk. In columns (1) to (3) of Panel A, treated banks are
divided by bank riskiness (measured by the log of Z-score) in the year before a cyberattack. Treated banks are denoted
as riskier (less risky) if their Z-score is below (above) the median value in the year before the cyberattack. In column
(4) to (6) riskier banks are defined as those that jointly have NPL and Tier 1 ratios above (below) the sample median.
Treated banks are sorted into high (low) risk groups if they are above (below) the median risk measures (Treated Hack
High (Low) Risk). Treated is a dummy that equals one if a branch belongs to a hacked bank and zero otherwise; Post is
a dummy equal to one in the post-shock window (up to 3 years after the shock). The difference-in-differences estimate
of the coefficient of Treated Hack High (Low) Risk x Post is the difference between how the dependent variable changes
in the branches of treated banks with high (low) risk (namely, banks affected by a cyberattack) and in the branches of
control banks after the shock. Panel B reports results of the baseline regression where bank controls are sequentially
(columns (1) to (6)) and jointly (column (7)) interacted with Post. Size is measured as the logarithmic transformation
of bank total assets in thousands of US$. ROA is the ratio between net income and total assets, Tier 1 is total tier 1
capital divided by risk weighted assets, NPL is the fraction of non-performing loans with respect to total loans, Loans is
constructed as total loans divided by total assets and Productivity is defined as the ratio between total assets and the
number of employees. Variable definitions, details on the construction of variables and sources are provided in Table A2
in the Online Appendix. All models include branch and county × year fixed effects. Standard errors are clustered at the
bank-level and are reported in parentheses. ∗∗∗, ∗∗, and ∗ indicate statistical significance at the 1%, 5% and 10% levels.
Panel A Fundamentals

Ln(Deposits)

(1) (2) (3) (4) (5) (6) (7)
Treated × Post -0.185∗∗ -0.210∗∗∗ -0.216∗∗∗ -0.206∗∗∗ -0.217∗∗∗ -0.233∗∗∗ -0.212∗∗∗

(0.074) (0.074) (0.077) (0.077) (0.074) (0.076) (0.068)
Size × Post -0.056 -0.009

(0.048) (0.045)
ROA × Post 6.869 6.093

(4.165) (3.766)
NPL × Post 1.895 1.401

(2.545) (2.668)
Tier 1 × Post 0.604 1.269

(0.810) (0.972)
Loan × Post 0.395 0.522

(0.308) (0.327)
Productivity × Post -0.013 -0.018

(0.013) (0.011)
Branch FE Yes Yes Yes Yes Yes Yes Yes
County x Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 14382 14382 14382 14382 14382 14382 14382
Adjusted R2 0.936 0.936 0.936 0.936 0.936 0.936 0.937

56


	Introduction
	Identification Strategy and Data
	Treated and Control Banks
	Econometric Method
	Comparing the Treated and Control Group and Testing for Parallel Trends
	Characteristics of Treated and Control Branches and Banks
	Parallel Trends Assumption


	Direct Effects of Cyberattacks
	Cyberattacks and Deposits
	Additional Tests
	What Drives the Depositor Response? Private Information Loss Versus Small Bank Stability
	Exposure to Identity Theft, Depositor Digital Sophistication and Response to Cyberattacks
	Small Bank Risk and Depositor Response to Cyberattacks
	Disentangling the two Explanations Using Household Borrowing Data


	Spillover Effects in Local Deposit Markets
	Spillover Effects towards Large Banks
	Spillover Effects towards Small Banks

	Aggregate and Real Effects
	Market Structure Effects
	Small Business Lending Effects

	Conclusion

