System-wide stress simulation

By David Aikman, Pavel Chichkanov, Graeme Douglas, Yordan Georgiev, James Howat, and Benjamin King

Discussion by Jose Berrospide

2019 EBA Policy Research Workshop November 28, 2019

The views expressed do not necessarily reflect those of the Federal Reserve or its staff.

Paper Summary

- Paper develops a GE model of the UK's system of market finance:
 - 7 representative agents: Pension funds, Life insurers, Investment funds (Longterm investors), hedge funds (arbitrageurs), MMFs and banks (cash providers), and broker dealers (intermediary).
 - 3 markets: bond, Repo, and derivatives.
- Authors use the model to assess resilience of market-based finance and the system performance under stress scenarios:
 - Agents optimization (e.g., max. expected return of asset portfolios) include regulatory (solvency and liquidity) and other (e.g., margin calls) constraints.
 - Liquidity in asset and funding markets is endogenously determined.
 - Agent interactions in these markets generate feedback loops and contagion channels leading to fire sale externalities.
 - Individual and multi-shock stress scenarios leading to portfolio rebalancing (e.g. deleveraging) and funding strains illustrate "tipping points" beyond which shock amplifications generate large illiquidity premium.

Paper Contribution

- Paper addresses a very interesting and hot topic: significant postcrisis expansion of nonbank financial institutions (NBFI):
 - $\circ~$ New and unique dataset on NBFI's balance sheet information.
 - Heterogeneous behavior of NBFIs with focus on interconnectedness and fire sales externalities.
- Lots of institutional details for behavior of NBFIs and their interactions in asset, funding, and derivatives markets.
- Novelty: liquidity and asset prices are endogenously determined
 - Nonlinear price adjustments when agents hit constraints lead to shock amplification.
 - Model illustrates how the interplay of capital and liquidity constraints could mitigate impact of the shocks.

Comments I: Model

- Very ambitious and complex model:
 - Many simplifying assumptions, sectors with passive behavior, sectors not modeled, markets that are unconstrained or do not clear domestically.
 - No macro variables.
 - Shocks (e.g., deteriorating outlook for credit risk and corporate profits) are changes in parameters.
- No model dynamics
 - Two periods, but one-shot game: agents react today to expectations of a shock tomorrow (e.g. corporate bond defaults).
 - What are fire sales externalities? (asset unwinding happens all at once but how about sequential decisions according to liquidation rules?).
 - Price determination and role of (exogenous) price targets of arbitrageurs (hedge funds) need more explanation.
- Model layout and description makes it hard to follow
 - Notation issues and missing (e.g. more explicit) identities.

Comments II: Assumptions and Notation

- Lots of simplifying assumptions:
 - Investment funds and Insurers do not participate in repo markets.
 - MMF and banks do not participate in derivatives (IRS) markets.
 - Broker-dealers do not maximize profits.
 - Endogenous prices: Why is the repo rate exogenous?
 - Broker-Dealers and investment funds are exposed to IRS markets: Initial and Variation margin constraints are missing (only *IM*^{IF} in Table B6)
- Notational issues:
 - Model splits repo into short-term and long-term, sometimes constraints use $A_{R,t}^i$ and $L_{R,t}^i$. Other times you only see: $A_{SR,t}^i$ and $L_{SR,t}^i$
 - Duration: sometimes as exponents, T^I (insurers' obligations); other times as variables: D^{PF}_{GB} (pension funds' government bonds). How are these determined? Parameters in Table B8 do not include them!
 - Mixed funds target their leverage ratio by adjusting their IRS exposure: No expression for this!
 - Derivatives (IRS) gross positions modeled only for some but not all exposed agents.

Comments III: Results

- Single shocks have only modest impact (no fire sales)
- Large Multi-shocks (stress scenario) illustrate contagion channels:
 - Need to impose binding constraints on both broker dealers and commercial banks to amplify drop in prices and to generate fire sales, illiquidity and presumably real effects.
 - Bank capital and insurer's solvency constraint, as well as liquidity of investment funds matter.

<u>Concerns</u>

- Can't rule out multiple equilibria
- Are small effects of large shocks surprising?
 - Bank capital in the model calibrated to Basel III requirements (solvency issues?)
- Model separation of banking into commercial banks and broker dealers does not allow assessing real effects.
 - \circ $\,$ CBs only supply repo and loan losses to HH and firms are exogenous.
 - \circ $\,$ DBs in repo markets explain all the action on liquidity and funding.

Comment IV: Conclusions

- Model predictions: what do we learn?
 - Qualitatively (e.g. directionally): contagion, fire sales, and illiquidity due to large shocks and binding constraints seem reasonable but not surprising.
 - Quantitatively: model only generates "tipping points" or thresholds for deleveraging and fire sales.
- Do we need a very complex model with 7 representative agents and 3 markets for those outcomes?
 - Model complexity forces too many simplifying assumptions which may defeat the purpose of quantifying effects.
 - Complexity also obscures identification of driving forces.
 - Are there new policy implications for financial stability?

Wrapping Up

- Paper considers a very interesting and hot topic.
- Authors have created new and unique dataset for NBFIs
- Model illustrates interaction of shocks and binding (capital, liquidity, and institutional) constraints in generating deleveraging, fire sales, and illiquidity.
- General suggestions:
 - Model seems too complex to deliver quantitative results with new financial stability implications and more relevant policy discussions.
 - \circ $\,$ Authors may want to simplify the model.