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ABSTRACT

The Prudential Regulation has raised the issue of estimation errors
due to Internal Rating Based (IRB) estimation process that may
produce underestimation of the risk measures. In the context of
credit risk, lower bounds (i.e. floors) for the estimated parameters
are introduced to limit the impact of such possible
underestimation. These floors are heuristically justified by the
difficulties to estimate the parameters when the default event
becomes rare, as in the case of Low Default Probability Portfolios
(LDP). In this paper, on the basis of a standard Asymptotic Single
Risk Factor (ASRF) model, and by means of Monte Carlo
simulations, we provide a robust justification to PD floors, and a
framework for their calibration. Our results give hints that the
introduction of a floor can indeed mitigate the possibility that the
risk measures become less reliable.
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1. INTRODUCTION:

The Basel Committee on Banking Supervision (BCBS) (2006) introduced a risk-based framework
(Basel 1l) into the system of prudential regulation for banks, allowing them to use internal models
to calculate minimum capital requirements for major risk types. Since then, banks may use their
estimates of the probability of default (PD), although the Regulator imposed that the “PD of an
exposure shall be at least 0.03%” (EU, 2013; p. 105)2. Such a floor has been introduced in
recognition of the difficulty banks would face in estimating and validating PD estimates of this
magnitude.

There are various trade-offs regarding the appropriate calibrations of the floors. As stated in BCBS
(2016; p. 6) “Floors on individual model parameters can be applied in a targeted way to address
concerns about the reliability of particular inputs for particular portfolios. For example, PD floors
address the problem that in low-default portfolios, a large number of observations are needed to
give confidence in the estimated PD”. Moreover, the floors can reduce the variation in model
parameters for the same exposure increasing the comparability among banks. Too high floors,
however, could bias the risk measures.

Under the revised prudential framework of Basel Ill, the BCBS (2017) introduced the so-called
output floors and reviewed the input floors. These are used to limit excessive variability of the
banks’ estimates and to increase their reliability. In particular, “The PD for each exposure that is
used as input into the risk weight formula and the calculation of expected loss must not be less than
0.05%.” (BCBS, 2017; p. 65). This change was implemented because banks did not always have
sufficient information on historical default observations. Among the many aspects of the overall
framework of Basel Illl, Regulators believe that input floors are an important aspect to increase the
robustness of the IRB approach.

In order to gauge the expected impact of the Basel Ill reforms, the European Banking Authority
(EBA, 2017; 2019) conducted a survey of the major EU banks. In terms of the impact of PD input
floors, the study found that the greatest impact in terms of minimum capital requirements will be
on the so-called Low Default Portfolios, particularly loans to financial institutions and large
corporate customers. Despite the relevance and the expected impact of the PD floor, no clear
indication about its quantitative calibration were provided by the BCBS while, as mentioned above,
they were heuristically justified by the difficulties to estimate the parameters when the default
event becomes rare.

In this paper we study the necessity of the introduction of PD floors. To this end, we specialise the
approach suggested by Casellina et al. (2023) in the low default probability case to tackle the
problem of the variability of the PD estimate. We provide a robust justification to the floors, and a
framework that would enable calibrating them. Setting the minimum level of a parameter that can
be reliably estimated is not a so often discussed topic in the literature. Papers such as Pluto and

L The opinions expressed are those of the authors and do not involve responsibility of the institutions. We gratefully thank
the anonymous reviewers for precious suggestions and comments that helped us to improve the paper.

2 See Articles 160 (1) and 163 (1) in Section 4 of the of Regulation (EU, 2013) No 575/2013 - known as Capital
Requirements Regulation (CRR).
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Tasche (2014) and Bliimke (2020) deal with providing an estimator of the PD parameter in the
presence of a limited number of observed defaults. The topic we deal with in this paper, however,
is different. The estimator we consider is the simple ratio between the number of defaults and the
number of observations. We ask ourselves up to what minimum value of the PD parameter such an
estimator is reliable. To do so, we introduce the problem of the estimation error in the context of
the Supervisory model for the quantification of credit VaR, and show that, as the PD parameter
decreases, it becomes more difficult to correct the distortion that the estimation error induces on
the estimated of VaR.

The rest of the paper is organized as follows. Section 2.1 introduces notation and briefly reviews
the framework underlying the IRB approach, i.e., the ASRF model. Section 2.2 addresses the
proposed approach to control for the estimation error. Section 3 focuses on the proposed PD floor
model to correct the a-quantile estimation so as to set aside the bias induced by the variability of
the PD estimator. Section 4 provides Monte Carlo (MC) simulation results to assess the validity of
the results obtained for different values of parameters. Section 5 concludes. Appendices contain
the meta-code of the developed program listings that the reader may implement with the preferred
programming language.

2. The IRB theoretical framework and
the PD estimates

2.1 Notation and basic assumptions of the ASFR model

For credit risk, the BCBS relies on a stochastic credit portfolio model aimed at providing the estimate
of the loss amount which will not be exceeded with a given confidence level a, that is arbitrarily
set, and the corresponding loss threshold is the VaR at this confidence level: VaR,. The VaR
estimates the worst-case loss over a target horizon that will not be exceeded with a given level of
confidence (Jorion, 2006), i.e., VaR is the a-quantile of the loss distribution. In the credit-risk
framework, the confidence level @ is commonly set to, at least, 99.5% (Bolder, 2018) but, for the
IRB approach, the BCBS sets the confidence level to 99.9%: “an institution is expected to suffer
losses that exceed its level of Tier 1 and Tier 2 capital on average once in a thousand years. This
confidence level might seem rather high. However, the high confidence level was also chosen to
protect against estimation errors, that might inevitably occur from banks’ internal PD, LGD and EAD
estimation, as well as other model uncertainties” (BCBS, 2005; Section 5.1, p.11)3.

The ASRF model is the baseline for the derivation of the credit risk measures under the IRB approach
(Bolder, 2018). Following the classic structural Merton-Vasicek model (Merton, 1974; Vasicek,

3 It is worth noticing that the IRB approach was originally calibrated for large, internationally active banks and for those
banks where an A- rating is typically expected to be needed for a sustainable business model. And A- corresponds
roundabout to a historical 0.1% default rate suggesting a 99.9% confidence level.
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1987, 1991; Gordy*, 2003) the creditworthiness change of the i-th exposition is defined as a function
of two random variables and a parameter Y; ; = Y(Zt, Wi ¢ w). More explicitly, ¥; ;: = Vo - Z, +
V1 —w - W;; where Z,~N(0,1) is assumed a systematic risk factor, that homogeneously spreads
its effect on each single borrower, and W; ;~N'(0,1) is an idiosyncratic term, that heterogeneously
hits the i-th borrower only. Parameter w € (0,1) is an exogenous correlation parameter set by the
Regulator®: portfolios of different instruments have their specific value of w, also named as the
factor loading, that shapes the correlation of the systematic risk factor with the individual
creditworthiness change. In the case of large corporate portfolios, the parameter w ranges
between 12% and 24%. It is further assumed that the default event for the i-th counterpart is
triggered by Y, as D; ; = 1{Yi_t < s}, where s is a given threshold; 1{... } is the standard indicator
function that returns 1 if the statement is satisfied or 0 otherwise. The default rate (DR), i.e., the
percentage of defaults observed in a given period t, is different from PD because it depends on the
value realized by Z; in that period. By conditioning to a given realization Z; = z one finds
th ~ N(\/a -z,1— a)). Therefore, the probability of default conditioned to Z; = z is E(DR) =

P(Yi<c)= @ (C\;l\/_—_wj), where ¢ = ®~1(PD), PD is the long run probability of default®, ®=1(-)

denotes the inverse-cumulative Gaussian distribution function, and E(DR) is the expected value of
the default rate distribution. Under this framework, it can be shown that the following expression

provides the a-quantile of the default rate distribution”’:

&~1(PD)-Vw <1>—1(1—a)) —® (dfl(PD) + ~/6-<1>—1(a))

4o (DR) = VaR,(PD) = qn( = e

(1)
where the last expression is involved in the BCBS setting to simplify the usage, so when z is
evaluated at its worst-case o-level outcome, BCBS replaced ®~1(1 — a) with @ 1(a). This
changes the sign in the argument of ®~1(-), makes (1) easier to follow, and introduces a negative
relationship between the systematic variable and default outcomes implicit in the one-factor
Gaussian threshold model.

The quantity q,(DR) = VaR,(PD) is the VaR with a confidence level a. In other words, the
default rate should exceed this quantity with probability ]P(DR > qa(DR)) = 1 — a: thatis to say
that “exceptions” like DR > q,(DR) should be materially observed in (1 — @)% of the cases. As
mentioned above, under the IRB framework the level of confidence a is set equal to 99.9% so that
it is expected that the default rate exceeds the VaR with probability 0.1%.

To compute the VaR it is necessary to estimate some parameters and these estimates are subject
to uncertainty due to the estimation process. Replacing the true parameters’ value in the
theoretical formula (1) with sample estimates, which are based on sampling observations,
introduces an additional source of uncertainty, and this implies the so called “estimation risk”. In
practice, the quantity q,(DR) is substituted with its plug-in equivalent that can be understood
as an estimator (see Appendix C):

4 Gordy 2003 introduced the portfolio invariance property. This property loosely speaking allows to compute a capital
requirement for one exposure without considering the composition of the rest of the portfolio and without assuming
that the portfolio is homogenous.

> See Article 153 and 154 in Regulation (EU, 2013) No 575/2013 for specific values of w.
6 The long run probability of default is the time average of the portfolios’ default rate.

7 As a shorthand notation q.(DR) represents the a-quantile of the distribution of the quantity in argument.
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4u(DR) = VaR,(PD) = ® (¢_1(ﬁ))+\/5~¢‘1(a))

= (2)
where PD is the estimator of the parameter PD. It is worth noticing that §,(DR) is an unbiased
estimator of q,(DR), i.e., E[G,(DR)] = q,(DR).

In Casellina et al. (2023), the impacts of the variability of the PD estimates are analyzed in the IRB
theoretical framework. In particular, it is shown that when the parameter PD in (1) is substituted
with its estimate PD as in (2), the probability that the default rate exceeds the quantity
Go(DR) is higher than 1 — a, say P(DR > §,(DR)) > 1 — a and this is due to the estimation
error that is to be taken into account.

2.2 The proposed approach to control for the PD estimation error

The main issue to be clarified is that the parameter PD is a theoretic notion while, in practice, it is
a parameter to be estimated, and this aspect introduces the estimation risk issue. As a
consequence, even if the estimator of the input parameter is unbiased, its sample variability can
introduce a bias in the VaR measure.

Casellina et al. (2023) propose a computational approach, here described with technical detail in
the Appendices, aimed at obtaining a correct estimate of the a-quantile of the default rate
distribution correcting for the variability of the estimator PD. It is worth stressing that a point of
strength of this approach is that it is completely specified within the regulation framework, without
further assumptions. This approach consists in substituting the estimate of the PD with an
appropriate upper bound of a confidence interval estimator (see Appendix D):

U(B) =u(p; PD) == PD + ®71(B) |02, (3)

with 8 € (0,1). This expression is obtained from the same underlying hypotheses of the IRB
framework and, in particular, the variance of the estimator PD (i.e., 0}%) need not be estimated
as it is derived from the same regulation hypotheses, see Appendix A.8 Therefore, this approach
does not introduce any additional hypothesis and it does not require estimating any additional
parameter. The estimator of the adjusted-VaR of the default rate distribution is then (see Appendix
D)

-1(fj -1
o~ 1(T(B))+w P (a)) (4)

1-w

Gap(DR) = VaRZY (PD,B) = & (

where value of the B-confidence of the upper-bound interval estimator must fulfil the following
condition

P(DR > g,4(DR)) =1 -a (5)

8 More specifically, this means that we do not have to evaluate the standard deviation of historical default rates, which
could be correlated, but rather we can estimate the variance as described in Appendix D according to a known result of
Bluhm, et al. (2010); see Proposition 2.5.9.
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Casellina et al. (2023) show that, in general, the level of the correction is not fixed, namely 8 should
be higher when the number T of observations (years) is smaller, when the asset correlation w is
higher or the level of the PD is lower, that is what typically happens with so-called “low-PD”
portfolios, e.g., large-corporates portfolios or the best rating grades samples of any other
portfolios. The key point of the proposed methodology is that 8 is the control variable of the
problem but it has a natural upper bound in 100%.

3. The need for a PD floor

In LDP credit risk assessment, when the PD is low and the default events are infrequent, it can be
expected that the difficulties in estimating the PD increase to such an extent that the bias of the
VaR estimator also increases, and its reliability decreases. In this paper we show that there are
levels of PD, asset correlations and number of observations (years) used for the estimation of the
PD, for which it does not seem possible to correct the estimate of the a-quantile of the distribution
of the default rates. In other words, in this paper we claim that the floor should be set at such a
level below which it is no longer possible to correct for estimation error in the quantification of the
default rate distribution quantile.

For example, consider the case of a portfolio of N = 1,000 large exposures, T = 15 years of
observations, and estimated PD equal to 1%. The Figure 1 represents the outcomes of the
numerical process used in Casellina et al. (2023) to set the value of 8 (on the x-axis), i.e., the
recursive grid-search algorithm described in Appendix D. In practice, 8 is set so that the difference
between the effective probability that the default rate exceeds the estimated quantile is equal to
1 — a. In other terms, 8 is chosen so to minimize the quantity:

S = [P(DR > Gup(DR)) — (1 — )| (6)
that is represented on the y-axis: notice that g, g(DR) = VaRgdj (Pb,ﬁ) asin (4).

The Figure 1 shows that by setting f = 79.275% it is possible to ensure that the effective
probability that the default rate exceeds the estimated a-quantile is equal to 1 — a or, in other
terms, that S(B) = 0. Notice that the asset correlation w is equal to 24% which is the highest level
envisaged by the regulation. Moreover, Figure 1 shows that, when the estimated PD decreases, for
example from 1% (panel (a)) to 0.5% (panel (b)) and to 0.25% (panel (c)), then it is necessary to
increase the level of § to strengthen the level of the correction: from § = 0.79275 (panel (a)) to
B = 0.82538 (panel (b) to # = 0.86695 (panel (c)). This outcome suggests that for extremely low
PD it will not be possible to correct the estimated quantile of the default rates distribution.
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Figure 1: results of the recursive grid-search estimate of 8 for a portfolio of N = 1,000, T = 15,
w = 24% and PD = 1%, 0.5%, 0.25%; see Appendix D.
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The optimization is obtained numerically (derivative free algorithm). While situations where the
minimum of S(B) corresponds to multiple levels of the PD are possible, in such cases we take
prudentially the maximum between the PD values associated with the minimum of S(f8). This can
be seen in figure 1 (b), but is also clear from the code provided in the Annex: lines 30 - 33 of the
Annex D.
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4.1 Introductory example

We study the case of portfolios of N = 1,000 counterparts for which the PD parameter is
estimated as the average of T observed portfolio years. Also, we assume we are dealing with large
corporates portfolios, then the level of the asset correlation is always w € [12%, 24%].°

The top panel of Figure 2 showcases how the confidence f increases when the estimated PD
decreases from 1% to 0.05% (read the x-axis from right to left). The bottom panel instead shows
that the probability that the default rates exceed the estimated a-quantile is exactly equal to 1 —
a, until the estimated PD drops below a certain level. In case T = 10 years (solid lines) ten year
are used for the estimation, while the lowest PD for which it is possible to correct the estimated a-
quantile is equal to 0.25%, with associated level of § = 99.2%; below this value the quantity

P (DR > qarﬁ(DR)) becomes higher than 1 — a = 0.1%.

For example, with a PD equal to 0.05% (i.e., the floor under Basel Ill), the quantity ]P(DR >

@a,B(DR)) isequalto 2% i.e., 20 times larger than the desired level 1 — a = 0.1%. However, with

a larger number of observations, for example T = 15 (dashed lines), it is possible to correct the
estimated a-quantile for a lower level of the PD. Figure 2 shows that with T = 15 it is possible to
arrive to a PD level of 0.15% with a confidence § = 94.5%. Below such value of PD no correction
to the VaR is possible because the confidence level f faster reaches its maximum at 100%.

9 See Article 153 of Regulation (EU, 2013) No 575/2013.
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Figure 2: Estimates of f with N = 1,000 and w = 24% for different values of PD.
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4.2 Floors for different values of parameters

In our approach, the analytic definition of the PD-floor reads as follows:
PDy1o0r = argmin[S(8; PD) < ¢]:S(8; PD) = [P (DR > Gos(DR)) - (1 - )| (7)

Where i]‘a,ﬁ(DR) = VaRgdj(ﬁD;ﬁ) as in (4) and £ is a tolerance level that we have set equal to

0.01%19. That is, we search for the lowest PD that fulfils (6) according to the S -confidence
adjusted-Var defined in (4).

In Figure 2 we have just seen that for a fixed level of the asset correlation w and for a fixed size of
the portfolio N, there exists a level of the PD, depending on the number, under which it is not
possible to correct the measure of the quantile of the default rates distribution. Let us now consider
Figure 3 that shows the minimum level of PD (i.e., the floor) for which is possible to correct the
estimate of the a-quantile of the default rate distribution as the number of the time observations
varies while keeping constant the size of the portfolios and given the same asset correlation w =
24%.

Figure 3: Estimates of § with N = 1,000, w = 24% and different values of T and PD
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Figure 3 makes clear is that, the shorter the time series of default rates (T) is, the higher the
confidence () is needed to adjust the VaR, and even higher levels of 8 are needed to adjust the
VaR if the PD gets lower and lower.

10 |n numerical simulations we set £ = 0.01%. We observed that smaller values do not significantly improve the results,
while being more computationally demanding to obtain.

11
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Table 1: PD floors given different portfolio size (N), time series length (T') and correlation (w)

eha

T\N 250 500 750 1000 1500
° 7 1.200% 0.700% 0.550% 0.450% 0.350%
Y 10 0.700% 0.400% 0.300% 0.250% 0.200%
g 15 0.400% 0.200% 0.150% 0.150% 0.100%
20 0.250% 0.150% 0.100% 0.100% 0.075%
° 7 0.750% 0.400% 0.300% 0.200% 0.175%
N 10 0.450% 0.250% 0.200% 0.150% 0.100%
g 15 0.300% 0.150% 0.100% 0.100% 0.050%
20 0.250% 0.100% 0.100% 0.050% 0.040%

European
Banking
Authority
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Table 1 provides the minimum level of the PD (i.e. the floor) for which it is possible to correct the
estimated a-quantile so that P (DR > Qa_ﬁ(DR)) = 1 — a. This level can be seen as the floor for
the PD given the combination of T, N and ®. Notice that the level of the floor obtained is not
constant, as it varies with the size N of the portfolio and the number T of years used for the
estimation of the PD parameter. In this table, two asset correlation values are considered, which
are at the minimum (12%) and at the maximum (24%), as defined by Regulation for large corporates
portfolios. The main result is: the shorter the time series of default rates and the smaller the size of
the portfolio, the higher the PD-floor both with the minimum allowed asset correlation and (even
more so) with the maximum level of correlation.

5. Conclusions

In this paper we studied the floor for the PD parameter, introduced by the Regulator in the IRB
framework, in the context of credit risk and for low default portfolios: i.e. portfolios characterized
by very low probability of default. By means of the Monte Carlo approach we provide a rationale
for the PD-floor. The main results of this paper are the following.

First of all, we showed the usefulness of introducing floors on the PD since, below certain values of
the long run PD, the impact of the estimation error is such that it is not possible to correct the
quantification of the quantile of the default rate distribution.

Secondly, we have shown that the floor level should change based on the number of years used for
the estimate, the size of the portfolio and the level of asset correlation. For example, we have seen
that a floor of 0.05% (i.e. the regulatory value) may be necessary when 15 years of observations are
available and the portfolio (single rating grade in case of calibration by grade) has 1500 positions,
i.e. a fairly realistic situation.

Thirdly, we provided a framework that could be used to calibrate the floor on case-by-case basis.
For example, we have evidence that with small portfolios (200 obligors), high asset correlation
(24%) and a short time-window (7 years) the PD-floor should be definitively higher. The results
show that in general, for any combination of portfolio size, asset correlation and time series length
there exists a limit for the PD under which it is not possible to adjust for estimation error. Moreover,
this limit is not fixed and in particular it decreases with size. As such, it is possible that the PD limit
is even lower than the Basel Ill floor. However, the Basel Il floor appears adequate when the
portfolio includes at least 1000 borrowers and the time series is longer than 15 years. These appear
as normal conditions that can be usually found in practice. As such the Basel Ill floors appear as
justified. These results could also serve to justify the additional requirement of avoiding the
construction of excessively granular master scales.

We have not explored the calibration of the floors, as our intention with this paper was to provide
a justification for the introduction of the floors. We leave that item for further research, where an
analysis of the trade-off between a simple approach like the Basel Ill one and a more complex

13
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system of graduation of floors should also be considered. For example, we cannot exclude that
having a single fixed floor or a system of floors would result in practically the same capital
requirements.

Our results hint towards the likelihood that the introduction of a floor can indeed mitigate the
possibility that the risk measures become less reliable for low default portfolios. We also have
highlighted that for small portfolios with low PD observed over a few years, there would be room
to set the floor to even higher levels than the one envisaged by the Regulation. This last result,
however, depends heavily on the level of the asset correlation w: lower values of the asset
correlation would lead to lower levels of the floors. However, estimating the asset correlation
would entail introducing further sources of variability. Extending the analysis to the simultaneous
estimation of PD and asset correlation parameters is left for further developments of the here
proposed approach.

14
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The following appendices report the meta-code that can be used for numerical estimation by means
of the computational approach of Casellina et al. (2023). It should not be difficult for the reader to
adapt this code to the most familiar programming language. Each appendix describes a function,
with inputs and outputs, involved in the following algorithm describing the whole procedure.

The algorithm needs of seven parameters to be set: the value of the probability of default PD =
0.1%); the value of the loading parameter w = 24%; the value of confidence for the credit VaR a =
99.9%; the size of the portfolio N = 1,000; the number of years to be simulated T = 10; the
number of Monte Carlo trials B = 10,000; x = 5% gives the fifth percentile of a Gaussian
distribution for importance sampling (see Bolder (2018); sec. 8.5). The procedure consists in
running the following programs detailed below.

Run [157), a,zﬁ)] = est_PDhat_and_Variance(PD,w,B,N,T)

Run [DRy,1, W] = gen_DR_Tplus1_and_ImpSampW gt(x, w, B, N)
Run [VaRa,Xa] = est_VaRalpha_and_Exceptions(a, w, PD, W)

Run [B, 5, VaRa,ﬁ] = est_confBeta_and_AdjVaR(a, w, PD, afﬁ,,W, K)
Compute Monte Carlo estimates but mainly get the estimated PDs;,

mo O WP

One may now want to find results for a different parameter setting, for instance enlarging the
observation window from T = 10 to T = 15, or reducing the loading factor from w = 24% to w =
12%, and so on. It just takes changing the parameters.

A. Estimation of PD and its variance

With a given parameters setting it simulates B portfolios, as Monte Carlo trials, of N exposures for
a period of T years depending on a given value of the PD parameter and of the loading factor w. It
returns (B X 1) vectors for the estimate PD of the long-run PD (time average of default rates) and
its variance aéb, for each portfolio. Therefore, this function serves to generate data for credit risk
analysis, as if a bank observed B portfolios over T years.

function [ﬁ), afﬁ)] = est_PDhat_and_Variance(PD,w,B,N,T)

c=®Y(PD) $ A PD value assumed as known
for b =1 : B $ b-th portfolio (b-th MC trial)
% simulates time series for

for t =1 : T % t-th year

z(b,t) ~;ijq MV(0,1) % the systematic factor

PD%(b,t) = GD(C_T/(IIZ_?)\/B) % the conditional PD
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DR?(b,t) ~jiq Bin(N,PD?(b,t))/N % the default rate

end

PD(b) =1 X DR?(b, 1)

o

this is the “long-run PD” that estimates parameter PD

o

> if PD(b) =0 then VaR, will be qu(b) =0

o©

hence DRy, 1(b) > qu(b) will be an exception

oe

by construction and ng(b) =0 by definition
if PD(b) >0 % variance: needed to compute the adjustment to the VaR

% (eq. (3) and Appendix D)

02, (b) = [q>2 (q:-l(DRz(b)),CD—I(DRZ(b)), (g)(i) ‘f)) - (ﬁb(b))z] /T
else

aﬁ'b(b) =0
end

end

B. Generates DR at T+1 and Importance Sampling weights

With a given parameters setting it simulates B portfolios, as Monte Carlo trials, of N exposures with
a given loading factor w at time T + 1. It returns (B X 1) vectors of the default rates DRy,
together with importance sampling weights for each portfolio. As long as credit risk analysis and
value at risk are needed over a 1-year horizon, this function generates this additional year for each
of the previously simulated portfolios. The function also returns Importance Sampling weights for
variance reduction to be used in VaR estimation.

‘ function [DRy,q, W] = gen_DR_Tplus1_and_ImpSampW gt(x, w, B, N)

m=® 1(x) $ default x =5%, to shift the Gaussian distribution
for b =1 : B $ b-th portfolio (b-th MC trial)

Zpy1(b) ~jig N(m,1) % systematic factor from the shifted Gaussian

PDZ, ,(b) = d)(%) % conditional PD with the shifted systematic factor
DRyy1(b) ~jiq Bin(N,PD%,,(b))/N % default rate with shifted PD

f(b) = ¢p(zr41(b)) % Gaussian PDF of the shifted systematic factor

gb) = ¢p(zr41(b) —m) % Gaussian PDF of the rescaled shifted systematic factor
wib) = L@ 5

o) Importance Sampling weights

end
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C. VaR, and exceptions

The inputs are a given confidence «, the estimated PDs with loading factor w as returned by the
Appendix A function [ﬁb, af;b] = est_PDhat_and_Variance(PD,w, B, N, T), and the importance
sampling  weights are returned by  Appendix B  function [DRy 1, W] =
gen_DR_Tplus1_and_ImpSampWgt(x,w,B,N) . It returns (B X 1) vectors of B portfolio
estimates of the VaR at the chosen a-confidence together with a scalar for the relative share of
portfolios for which the probability of the estimated default rate atthe T + 1 exceeds the VaR with
the estimated PD.

function [VaR,, X,| = est_VaRalpha_and_Exceptions(a, w, PD,W)

B = numel(f’b) % number of simulated portfolio

for b =1 : B % b-th portfolio (b-th MC trial)

if PD(b) >0

@a(b)=¢(¢_1(®(b)l)jj_l(a)\/w) % estimate of VaRg (PD): eq. (2)
else

Go(b) =0
end

if DRriy(b) > Gu(b)
X(b) =w(b) % cases of exception of DRpy;: if PD(b) =0 then
% Go(b) =0, hence DRy, 1(b) > Gu(b) surely
else
X(b) =0
end
end

Xy =YpX(b)/Tpw(b) % empirical estimate of P{PD <VaR,}=a or P{PD>VaR,}=1-a.

D. Adjusting VaR, with f confidence: recursive grid-search

Computing VaR, with confidence a = P{PD < VaR,} needs knowing the long run PD that can
be estimated with PD, therefore the estimator §, provides a biased estimate for VaR,(PD),
which has an uncertainty due to the estimate PD of parameter PD. To adjust VaR,(PD) we

introduce the upper-bound of a confidence interval for PD: U(B) = PD + ®~1(p) aéb, see (3).

21T B)+P (VW
Vi-w

This gives VaRZdj =VaR,p with estimator G, g(DR) = CD(
need to estimate the confidence f as § = ]P’{ISD < qaﬁ(ﬁb)}.

) of which we
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The inputs are the B estimates of PD and their variance as returned by Appendix A function
function [P.D, alz;b] = est_PDhat_and_Variance(PD,w,B,N,T) , the sampling weights as
returned by Appendix B function [DR., W] =
gen_DR_Tplusl_and_ImpSampW gt(x, w, B, N), the same a-confidence of Appendix C function
[ma,Xa] = est_VaRalpha_and_Exceptions(a, w, PD, W) and, of course, the same loading
factor w involved in previous functions.

The function returns three scalars: the best (recursively grid-searched) numerical estimate ﬁ of the
confidence B needed to adjust VaR, (PD), a tolerance § of this estimate, and the adjusted-VaR,
VaR% (PD; B).

function [B, 8, VaRarﬁ] = est_confBeta_and_AdjVaR(a, w, PD, of;b, W,K)

B = numel(ﬁl\)) % number of simulated portfolios

€=10"%,0,=5-¢, 6, =0,+5 % constants

Bo=0k =1 % initial condition

while(k < K) {% at the k-th iteration it evaluates
By = [Br-1— 6o -107%:10"**V: 5, +6,-107] % the set of f candidates
Jx = numel(B) % number of B candidates in the set
Je={€EN|j<Ji} % set of indices identifying the candidates f
for j =1 : Jp % for each candidate

for b =1 : B % for each simulated portfolio (MC trial)

if PD(b) >0

Op(b.j) = PD(b) + @~ (B()) |02, (B) % BG) = Be() is the j-th

o\

candidate at the k-th

oe

oe

iteration: eqg. (3)

. , (U, ))+o  (@Vw
Qep(b,)) = cb( = )

if DRry1(b) > 4B% (b))

$ VaR2(PD;B) eq. (4)

X(b,j) =w(b) % exception w.r.t. the
% adjusted VaR

else
X(,j)=0

end
else % if PD(b) =0 then Uﬁ(b,j) =0 hence
U};(b,j) = Qg_%(b,j) =0 % f]g%(b,j) =0 therefore

X(b,j) = w(b) $ DRp,4(b) > ﬁgf;(b,j) is an exception

18




A RATIONALE OF THE PD FLOOR UNDER THE IRB FRAMEWORK
European

e b a Banking
Authority

end

end

Xep() =2pX(b,j) /Xpw(b) & the share of exceptions to the adjusted VaR

Ya“g(]')= |(1—(x)—Xa“3(]')| % see eq. (6)

end
19 = {n € Jxln= argr%}]n[yaﬁ(j) - min{Yu_ﬁ(j)}]} % subset of indices
€Dk

% identifying the best B at the

oe

k-th iteration
U, =minJ? ¢ index of the smallest best f
v, =max]) % index of the largest best B
Br = Br(ur) % the best estimate of B at the k-th iteration
6 = Br(vp) — By(ur) % associated tolerance
k=k+1 % updates the iterator

}% while-cycle closes

B = max{B,} % estimate of B such that B =P{PD < VaR:"}

8 € {6x|Br = B} % tolerance

E. Monte Carlo estimates for a given value of PD with confidence «a
over B portfolios of N exposures for T years with loading factor w

Given the outcomes returned by previous functions, Monte Carlo estimates can be computed on
the basis of the initial parameters setting

PT)*=%ZI,I5-D(b)% Monte Carlo estimate of the long run PD

a

—=1(ppP* -1
i —¢(W) % estimate of VaR,

—1(~x -1 [ I
PDG"(:d)(M) % the Worst-Case-DR given VaR,
T-»

ok, = [q:z (¢-1(13D*),¢-1(15D*),(g),(i ‘f))-(ﬁb*)z] JT % variance of PD"
ﬁﬁ*= ISD*+CIJ_1(,[§) ng,, % adjustment for ma: upper bound of the confidence interval

FD* 7 Y(Up)+d M (aWw ——adj s
Qop = q’(w) % adjusted vaR, VaR:¥ =VaRyp

T-w
o142+ 1 ()W o _
PDgp = (% % Worst Case Default Rate given VaRgd] =VaRyp,

% the PD-floor
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F. Stability analysis of parameters estimates

In this section, we provide stability analysis results about the estimates of the confidence . We
consider an extreme set up of the main parameters: the confidence a = 99.9, a portfolio size of
N = 1,000 expositions, a theoretical PD = 1%, a loading coefficient w = 24% and a time series
length of T = 7 years. With this setting we dealt with 7 experiments, that differ only with respect
to the number of simulated portfolios (Monte Carlo trials) as reported in Error! Reference source
not found.. Moreover, each experiment has been run 100 times.

Table 2 Stability analysis experiments

EXP  # MC trials Min pl p5 p50 p95 p99 Max
1 100 0.5431 0.5606 0.6427 0.9316 0.9978 0.9997 0.9997
2 1.000 0.7620 0.7620 0.8066 0.9083 0.9775 0.9934 0.9995
3 10.000 0.8652 0.8718 0.8874 0.9068 0.9267 0.9417 0.9505
4 100.000 0.8920 0.8922 0.8946 0.9049 0.9135 0.9226 0.9290
5 500.000 0.8993 0.8997 0.9011 0.9057 0.9087 0.9162 0.9194
6 1.000.000 0.9001 0.9003 0.9017 0.9054 0.9088 0.9137 0.9168
7 2.000.000 0.9002 0.9010 0.9024 0.9057 0.9070 0.9111 0.9142

EXP # MCtrials range95 range99 average stderr outliers ranged9/  range9s/

average p50
100 0.3551 0.4390 0.8857 0.0116 0.0000 49.57% 47.13%
1,000 0.1709 0.2314 0.9039 0.0050 0.0000 25.60% 25.47%

10,000 0.0394 0.0700 0.9065 0.0013 0.0000 7.72% 7.72%
100,000 0.0189 0.0304 0.9050 0.0006 0.0000 3.36% 3.36%
500,000 0.0076 0.0165 0.9052 0.0003 0.0000 1.82% 1.82%
1,000,000 0.0072 0.0134 0.9051 0.0002 0.0000 1.48% 1.48%
2,000,000 0.0046 0.0101 0.9053 0.0002 0.0000 1.11% 1.11%

N o o b WN -

The first part of Error! Reference source not found. reports the main sample quantiles of the
empirical distribution of the 8 estimates in each experiment. As the number of trials increases, the
variability of the results is reduced, and quantiles stabilise with a narrow difference between the
minimum and the maximum: from [0.5431,0.9997] in Experiment 1 with 100 replicates to
[0.9002,0.9142] in Experiment 7 with 2,000,000 replicates.

To better visualise this outcome, consider Error! Reference source not found. and the second part
of Error! Reference source not found. where the range99, which evaluates the difference
between the 99-th and the 1-st percentiles, is reported. With 100 portfolios, the range99 is about
0.4390; with 500,000 portfolios it decreases to 0.0165; finally, it reaches 0.0101 if 2,000,000
portfolios are simulated. This means that our procedure provides stable estimates of the
confidence 8 that converges to an average value § = 0.9053 with a small standard error of about
0.02% and a less than 0.001% of outliers in each experiment, i.e., an exception can be observed
once in a million. Finally, the ratios of the range99 to the average or to the median (p50) become
equivalent even with a small number of simulated portfolios (e.g., 1,000), and they are significantly
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reduced as far as the number of simulated portfolios increases. With 2,000,000 simulated
portfolios, the range99 is about 1.11% of the average or the median. In other words, the
empirical estimates of the confidence § converge what can be considered the “true” value with the
specified parameters’ setting.

Figure 4 Stability analysis results

Stability analysis results
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