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ABSTRACT 

The Prudential Regulation has raised the issue of estimation errors 
due to Internal Rating Based (IRB) estimation process that may 
produce underestimation of the risk measures. In the context of 
credit risk, lower bounds (i.e. floors) for the estimated parameters 
are introduced to limit the impact of such possible 
underestimation. These floors are heuristically justified by the 
difficulties to estimate the parameters when the default event 
becomes rare, as in the case of Low Default Probability Portfolios 
(LDP). In this paper, on the basis of a standard Asymptotic Single 
Risk Factor (ASRF) model, and by means of Monte Carlo 
simulations, we provide a robust justification to PD floors, and a 
framework for their calibration. Our results give hints that the 
introduction of a floor can indeed mitigate the possibility that the 
risk measures become less reliable. 
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1. INTRODUCTION1 

The Basel Committee on Banking Supervision (BCBS) (2006) introduced a risk-based framework 
(Basel II) into the system of prudential regulation for banks, allowing them to use internal models 
to calculate minimum capital requirements for major risk types. Since then, banks may use their 
estimates of the probability of default (PD), although the Regulator imposed that the “PD of an 
exposure shall be at least 0.03%” (EU, 2013; p. 105) 2 . Such a floor has been introduced in 
recognition of the difficulty banks would face in estimating and validating PD estimates of this 
magnitude. 
 
There are various trade-offs regarding the appropriate calibrations of the floors. As stated in BCBS 
(2016; p. 6) “Floors on individual model parameters can be applied in a targeted way to address 
concerns about the reliability of particular inputs for particular portfolios. For example, PD floors 
address the problem that in low-default portfolios, a large number of observations are needed to 
give confidence in the estimated PD”. Moreover, the floors can reduce the variation in model 
parameters for the same exposure increasing the comparability among banks. Too high floors, 
however, could bias the risk measures. 
 
Under the revised prudential framework of Basel III, the BCBS (2017) introduced the so-called 
output floors and reviewed the input floors. These are used to limit excessive variability of the 
banks’ estimates and to increase their reliability. In particular, “The PD for each exposure that is 
used as input into the risk weight formula and the calculation of expected loss must not be less than 
0.05%.” (BCBS, 2017; p. 65). This change was implemented because banks did not always have 
sufficient information on historical default observations. Among the many aspects of the overall 
framework of Basel III, Regulators believe that input floors are an important aspect to increase the 
robustness of the IRB approach. 
 
In order to gauge the expected impact of the Basel III reforms, the European Banking Authority 
(EBA, 2017; 2019) conducted a survey of the major EU banks. In terms of the impact of PD input 
floors, the study found that the greatest impact in terms of minimum capital requirements will be 
on the so-called Low Default Portfolios, particularly loans to financial institutions and large 
corporate customers. Despite the relevance and the expected impact of the PD floor, no clear 
indication about its quantitative calibration were provided by the BCBS while, as mentioned above, 
they were heuristically justified by the difficulties to estimate the parameters when the default 
event becomes rare. 
 
In this paper we study the necessity of the introduction of PD floors. To this end, we specialise the 
approach suggested by Casellina et al. (2023) in the low default probability case to tackle the 
problem of the variability of the PD estimate. We provide a robust justification to the floors, and a 
framework that would enable calibrating them. Setting the minimum level of a parameter that can 
be reliably estimated is not a so often discussed topic in the literature. Papers such as Pluto and 

 

1 The opinions expressed are those of the authors and do not involve responsibility of the institutions. We gratefully thank 
the anonymous reviewers for precious suggestions and comments that helped us to improve the paper. 

2  See Articles 160 (1) and 163 (1) in Section 4 of the of Regulation (EU, 2013) No 575/2013 - known as Capital 
Requirements Regulation (CRR). 
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Tasche (2014) and Blümke (2020) deal with providing an estimator of the PD parameter in the 
presence of a limited number of observed defaults. The topic we deal with in this paper, however, 
is different. The estimator we consider is the simple ratio between the number of defaults and the 
number of observations. We ask ourselves up to what minimum value of the PD parameter such an 
estimator is reliable. To do so, we introduce the problem of the estimation error in the context of 
the Supervisory model for the quantification of credit VaR, and show that, as the PD parameter 
decreases, it becomes more difficult to correct the distortion that the estimation error induces on 
the estimated of VaR. 
 
The rest of the paper is organized as follows. Section 2.1 introduces notation and briefly reviews 
the framework underlying the IRB approach, i.e., the ASRF model. Section 2.2 addresses the 
proposed approach to control for the estimation error. Section 3 focuses on the proposed PD floor 
model to correct the α-quantile estimation so as to set aside the bias induced by the variability of 
the PD estimator. Section 4 provides Monte Carlo (MC) simulation results to assess the validity of 
the results obtained for different values of parameters. Section 5 concludes. Appendices contain 
the meta-code of the developed program listings that the reader may implement with the preferred 
programming language. 
 
 

2. The IRB theoretical framework and 
the PD estimates 

2.1 Notation and basic assumptions of the ASFR model 

For credit risk, the BCBS relies on a stochastic credit portfolio model aimed at providing the estimate 
of the loss amount which will not be exceeded with a given confidence level 𝛼, that is arbitrarily 
set, and the corresponding loss threshold is the VaR at this confidence level: 𝑉𝑎𝑅𝛼 . The VaR 
estimates the worst-case loss over a target horizon that will not be exceeded with a given level of 
confidence (Jorion, 2006), i.e., 𝑉𝑎𝑅  is the 𝛼 -quantile of the loss distribution. In the credit-risk 
framework, the confidence level 𝛼 is commonly set to, at least, 99.5% (Bolder, 2018) but, for the 
IRB approach, the BCBS sets the confidence level to 99.9%: “an institution is expected to suffer 
losses that exceed its level of Tier 1 and Tier 2 capital on average once in a thousand years. This 
confidence level might seem rather high. However, the high confidence level was also chosen to 
protect against estimation errors, that might inevitably occur from banks’ internal PD, LGD and EAD 
estimation, as well as other model uncertainties” (BCBS, 2005; Section 5.1, p.11)3. 
 
The ASRF model is the baseline for the derivation of the credit risk measures under the IRB approach 
(Bolder, 2018). Following the classic structural Merton-Vasicek model (Merton, 1974; Vasicek, 

 
3 It is worth noticing that the IRB approach was originally calibrated for large, internationally active banks and for those 
banks where an A- rating is typically expected to be needed for a sustainable business model. And A- corresponds 
roundabout to a historical 0.1% default rate suggesting a 99.9% confidence level. 
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1987, 1991; Gordy4, 2003) the creditworthiness change of the i-th exposition is defined as a function 

of two random variables and a parameter 𝑌𝑖,𝑡 = 𝑌(𝑍𝑡 , 𝑊𝑖,𝑡;  𝜔). More explicitly, 𝑌𝑖,𝑡: = √𝜔 ⋅ 𝑍𝑡 +

√1 − 𝜔 ⋅ 𝑊𝑖,𝑡 where  𝑍𝑡~𝒩(0,1) is assumed a systematic risk factor, that homogeneously spreads 

its effect on each single borrower, and 𝑊𝑖,𝑡~𝒩(0,1) is an idiosyncratic term, that heterogeneously 

hits the i-th borrower only. Parameter 𝜔 ∈ (0,1) is an exogenous correlation parameter set by the 
Regulator5: portfolios of different instruments have their specific value of 𝜔, also named as the 
factor loading, that shapes the correlation of the systematic risk factor with the individual 
creditworthiness change. In the case of large corporate portfolios, the parameter 𝜔  ranges 
between 12% and 24%. It is further assumed that the default event for the i-th counterpart is 

triggered by 𝑌𝑖,𝑡 as 𝐷𝑖,𝑡 = 1{𝑌𝑖,𝑡 < 𝑠}, where 𝑠 is a given threshold; 1{… } is the standard indicator 

function that returns 1 if the statement is satisfied or 0 otherwise. The default rate (𝐷𝑅), i.e., the 
percentage of defaults observed in a given period 𝑡, is different from 𝑃𝐷 because it depends on the 
value realized by 𝑍𝑡  in that period. By conditioning to a given realization 𝑍𝑡 = 𝑧  one finds 

𝑌𝑖,𝑡
𝑧  ~ 𝑁(√𝜔 ⋅ 𝑧 ,1 − 𝜔). Therefore, the probability of default conditioned to 𝑍𝑡 = 𝑧  is 𝔼(𝐷𝑅) =

ℙ(𝑌𝑖,𝑡
𝑧 < 𝑐) =  Φ (

𝑐−√𝜔⋅𝑧

√1−𝜔
), where 𝑐 = Φ−1(𝑃𝐷), 𝑃𝐷 is the long run probability of default6, Φ−1(·) 

denotes the inverse-cumulative Gaussian distribution function, and 𝔼(𝐷𝑅) is the expected value of 
the default rate distribution. Under this framework, it can be shown that the following expression 

provides the 𝛼-quantile of the default rate distribution7: 

 

𝑞𝛼(𝐷𝑅) ≡ 𝑉𝑎𝑅𝛼(𝑃𝐷) ≔ Φ (
Φ−1(𝑃𝐷)−√𝜔 Φ−1(1−𝛼)

√1−𝜔
) = Φ (

Φ−1(𝑃𝐷) + √𝜔 ·Φ−1(𝛼)

√1−𝜔
)                         (1) 

 
where the last expression is involved in the BCBS setting to simplify the usage, so when 𝑧  is 
evaluated at its worst-case α-level outcome, BCBS replaced Φ−1(1 − 𝛼)  with Φ−1(𝛼) . This 
changes the sign in the argument of Φ−1(·), makes (1) easier to follow, and introduces a negative 
relationship between the systematic variable and default outcomes implicit in the one-factor 
Gaussian threshold model. 
 
The quantity 𝑞𝛼(𝐷𝑅) ≡ 𝑉𝑎𝑅𝛼(𝑃𝐷)  is the 𝑉𝑎𝑅  with a confidence level 𝛼 . In other words, the 

default rate should exceed this quantity with probability ℙ(𝐷𝑅 > 𝑞𝛼(𝐷𝑅)) = 1 − 𝛼: that is to say 

that “exceptions” like 𝐷𝑅 > 𝑞𝛼(𝐷𝑅) should be materially observed in (1 − 𝛼)% of the cases. As 
mentioned above, under the IRB framework the level of confidence 𝛼 is set equal to 99.9% so that 
it is expected that the default rate exceeds the 𝑉𝑎𝑅 with probability 0.1%. 
 
To compute the 𝑉𝑎𝑅 it is necessary to estimate some parameters and these estimates are subject 
to uncertainty due to the estimation process. Replacing the true parameters’ value in the 
theoretical formula (1) with sample estimates, which are based on sampling observations, 
introduces an additional source of uncertainty, and this implies the so called “estimation risk”. In 
practice, the quantity 𝑞𝛼(𝐷𝑅) is substituted with its plug-in equivalent that can be understood 
as an estimator (see Appendix C): 

 

4 Gordy 2003 introduced the portfolio invariance property. This property loosely speaking allows to compute a capital 

requirement for one exposure without considering the composition of the rest of the portfolio and without assuming 

that the portfolio is homogenous.  

5 See Article 153 and 154 in Regulation (EU, 2013) No 575/2013 for specific values of 𝜔. 

6 The long run probability of default is the time average of the portfolios’ default rate. 

7 As a shorthand notation 𝑞𝛼(𝐷𝑅) represents the 𝛼-quantile of the distribution of the quantity in argument.  
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𝑞̂𝛼(𝐷𝑅) ≡ 𝑉𝑎𝑅𝛼(𝑃𝐷̂) ≔ Φ (
Φ−1(𝑃𝐷̂)+ √𝜔 ·Φ−1(𝛼)

√1−𝜔
)                                                                                   (2) 

 

where 𝑃𝐷̂ is the estimator of the parameter 𝑃𝐷. It is worth noticing that 𝑞̂𝛼(𝐷𝑅) is an unbiased 
estimator of 𝑞𝛼(𝐷𝑅), i.e., 𝔼[𝑞̂𝛼(𝐷𝑅)] = 𝑞𝛼(𝐷𝑅). 
 
In Casellina et al. (2023), the impacts of the variability of the 𝑃𝐷 estimates are analyzed in the IRB 
theoretical framework. In particular, it is shown that when the parameter 𝑃𝐷 in (1) is substituted 

with its estimate 𝑃𝐷̂  as in (2), the probability that the default rate exceeds the quantity 

𝑞̂𝛼(𝐷𝑅) is higher than 1 − 𝛼, say ℙ(𝐷𝑅 > 𝑞̂𝛼(𝐷𝑅)) > 1 − 𝛼 and this is due to the estimation 

error that is to be taken into account. 
 

2.2 The proposed approach to control for the PD estimation error 

The main issue to be clarified is that the parameter 𝑃𝐷 is a theoretic notion while, in practice, it is 
a parameter to be estimated, and this aspect introduces the estimation risk issue. As a 
consequence, even if the estimator of the input parameter is unbiased, its sample variability can 
introduce a bias in the 𝑉𝑎𝑅 measure. 
 
Casellina et al. (2023) propose a computational approach, here described with technical detail in 
the Appendices, aimed at obtaining a correct estimate of the α-quantile of the default rate 

distribution correcting for the variability of the estimator 𝑃𝐷̂. It is worth stressing that a point of 
strength of this approach is that it is completely specified within the regulation framework, without 
further assumptions. This approach consists in substituting the estimate of the 𝑃𝐷  with an 
appropriate upper bound of a confidence interval estimator (see Appendix D): 
 

𝑈̂(𝛽) ≡ 𝑢(𝛽; 𝑃𝐷̂) ≔ 𝑃𝐷̂ + Φ−1(𝛽)√𝜎𝑃𝐷̂
2                                                                                                    (3) 

 
with 𝛽 ∈ (0,1) . This expression is obtained from the same underlying hypotheses of the IRB 

framework and, in particular, the variance of the estimator 𝑃𝐷̂  (i.e., 𝜎𝑃𝐷̂
2 ) need not be estimated 

as it is derived from the same regulation hypotheses, see Appendix A.8 Therefore, this approach 
does not introduce any additional hypothesis and it does not require estimating any additional 
parameter. The estimator of the adjusted-𝑉𝑎𝑅 of the default rate distribution is then (see Appendix 
D) 
 

𝑞̂𝛼,𝛽(𝐷𝑅) ≡ 𝑉𝑎𝑅𝛼
𝑎𝑑𝑗

(𝑃𝐷̂, 𝛽) = Φ (
Φ−1(𝑈̂(𝛽))+√𝜔 Φ−1(𝛼)

√1−𝜔
)                                                                       (4) 

 
where value of the 𝛽-confidence of the upper-bound interval estimator must fulfil the following 
condition 
 

ℙ (𝐷𝑅 > 𝑞̂𝛼,𝛽(𝐷𝑅)) = 1 − 𝛼                                                                                                                        (5) 

 
8 More specifically, this means that we do not have to evaluate the standard deviation of historical default rates, which 
could be correlated, but rather we can estimate the variance as described in Appendix D according to a known result of 
Bluhm, et al. (2010); see Proposition 2.5.9. 
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Casellina et al. (2023) show that, in general, the level of the correction is not fixed, namely 𝛽 should 
be higher when the number 𝑇 of observations (years) is smaller, when the asset correlation 𝜔 is 
higher or the level of the 𝑃𝐷  is lower, that is what typically happens with so-called “low-PD” 
portfolios, e.g., large-corporates portfolios or the best rating grades samples of any other 
portfolios. The key point of the proposed methodology is that 𝛽  is the control variable of the 
problem but it has a natural upper bound in 100%. 
 

3. The need for a PD floor 

In LDP credit risk assessment, when the 𝑃𝐷 is low and the default events are infrequent, it can be 
expected that the difficulties in estimating the 𝑃𝐷 increase to such an extent that the bias of the 
𝑉𝑎𝑅 estimator also increases, and its reliability decreases. In this paper we show that there are 
levels of PD, asset correlations and number of observations (years) used for the estimation of the 
PD, for which it does not seem possible to correct the estimate of the α-quantile of the distribution 
of the default rates. In other words, in this paper we claim that the floor should be set at such a 
level below which it is no longer possible to correct for estimation error in the quantification of the 
default rate distribution quantile. 
 
For example, consider the case of a portfolio of 𝑁 = 1,000  large exposures, 𝑇 = 15  years of 
observations, and estimated 𝑃𝐷  equal to 1%. The Figure 1 represents the outcomes of the 
numerical process used in Casellina et al. (2023) to set the value of 𝛽  (on the x-axis), i.e., the 
recursive grid-search algorithm described in Appendix D. In practice, 𝛽 is set so that the difference 
between the effective probability that the default rate exceeds the estimated quantile is equal to 
1 − 𝛼. In other terms, 𝛽 is chosen so to minimize the quantity: 
 

𝑆(𝛽) ≔ |ℙ (𝐷𝑅 > 𝑞̂𝛼,𝛽(𝐷𝑅)) − (1 − 𝛼)|                                                                                                   (6) 

 

that is represented on the y-axis: notice that 𝑞̂𝛼,𝛽(𝐷𝑅) ≡ 𝑉𝑎𝑅𝛼
𝑎𝑑𝑗

(𝑃𝐷̂, 𝛽) as in (4). 

 
The Figure 1 shows that by setting 𝛽 = 79.275% it is possible to ensure that the effective 
probability that the default rate exceeds the estimated α-quantile is equal to 1 − 𝛼 or, in other 
terms, that 𝑆(𝛽) = 0. Notice that the asset correlation 𝜔 is equal to 24% which is the highest level 
envisaged by the regulation. Moreover, Figure 1 shows that, when the estimated 𝑃𝐷 decreases, for 
example from 1% (panel (a)) to 0.5% (panel (b)) and to 0.25% (panel (c)), then it is necessary to 
increase the level of 𝛽 to strengthen the level of the correction: from 𝛽 = 0.79275 (panel (a)) to 
𝛽 = 0.82538 (panel (b) to 𝛽 = 0.86695 (panel (c)). This outcome suggests that for extremely low 
𝑃𝐷 it will not be possible to correct the estimated quantile of the default rates distribution. 
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Figure 1: results of the recursive grid-search estimate of 𝛽 for a portfolio of 𝑁 = 1,000, 𝑇 = 15, 

𝜔 = 24% and 𝑃𝐷 = 1%, 0.5%, 0.25%; see Appendix D.  

 
(a) PD=1% 

 
(b) PD=0.5% 

 
                                                                                    (c) PD=0.25% 

 
The optimization is obtained numerically (derivative free algorithm). While situations where the 
minimum of S(β) corresponds to multiple levels of the PD are possible, in such cases we take 
prudentially the maximum between the PD values associated with the minimum of S(β). This can 
be seen in figure 1 (b), but is also clear from the code provided in the Annex: lines 30 - 33 of the 
Annex D. 
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4. The PD floor setting 

4.1 Introductory example 

We study the case of portfolios of 𝑁 = 1,000  counterparts for which the 𝑃𝐷  parameter is 
estimated as the average of 𝑇 observed portfolio years. Also, we assume we are dealing with large 
corporates portfolios, then the level of the asset correlation is always 𝜔 ∈ [12%, 24%].9 
 
The top panel of Figure 2 showcases how the confidence 𝛽  increases when the estimated 𝑃𝐷 
decreases from 1% to 0.05% (read the x-axis from right to left). The bottom panel instead shows 
that the probability that the default rates exceed the estimated α-quantile is exactly equal to 1 −
𝛼, until the estimated 𝑃𝐷 drops below a certain level. In case 𝑇 = 10 years (solid lines) ten year 
are used for the estimation, while the lowest 𝑃𝐷 for which it is possible to correct the estimated α-
quantile is equal to 0.25%, with associated level of 𝛽 = 99.2%; below this value  the quantity 

ℙ (𝐷𝑅 > 𝑞̂𝛼,𝛽(𝐷𝑅)) becomes higher than 1 − 𝛼 = 0.1%.  

 

For example, with a 𝑃𝐷  equal to 0.05%  (i.e., the floor under Basel III), the quantity ℙ (𝐷𝑅 >

𝑞̂𝛼,𝛽(𝐷𝑅)) is equal to 2% i.e., 20 times larger than the desired level 1 − 𝛼 = 0.1%. However, with 

a larger number of observations, for example 𝑇 = 15 (dashed lines), it is possible to correct the 
estimated α-quantile for a lower level of the 𝑃𝐷. Figure 2 shows that with 𝑇 = 15 it is possible to 
arrive to a 𝑃𝐷 level of 0.15% with a confidence 𝛽 = 94.5%. Below such value of PD no correction 
to the VaR is possible because the confidence level 𝛽 faster reaches its maximum at 100%. 

 
9 See Article 153 of Regulation (EU, 2013) No 575/2013. 
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Figure 2: Estimates of 𝛽 with 𝑁 = 1,000 and 𝜔 = 24% for different values of 𝑃𝐷. 
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4.2 Floors for different values of parameters 

In our approach, the analytic definition of the PD-floor reads as follows: 
 

𝑃𝐷𝑓𝑙𝑜𝑜𝑟 ≔ arg min
𝑃𝐷

[𝑆(𝛽; 𝑃𝐷̂) < ℓ ]: 𝑆(𝛽; 𝑃𝐷̂) = |ℙ (𝐷𝑅 > 𝑞̂𝛼,𝛽(𝐷𝑅)) − (1 − 𝛼)|                       (7) 

 

Where 𝑞̂𝛼,𝛽(𝐷𝑅) ≡ 𝑉𝑎𝑅𝛼
𝑎𝑑𝑗

(𝑃𝐷̂; 𝛽) as in (4) and ℓ is a tolerance level that we have set equal to 

0.01%10 . That is, we search for the lowest 𝑃𝐷  that fulfils (6) according to the 𝛽 -confidence 
adjusted-𝑉𝑎𝑟 defined in (4). 
 
In Figure 2 we have just seen that for a fixed level of the asset correlation 𝜔 and for a fixed size of 
the portfolio 𝑁, there exists a level of the 𝑃𝐷, depending on the number, under which it is not 
possible to correct the measure of the quantile of the default rates distribution. Let us now consider  
Figure 3 that shows the minimum level of 𝑃𝐷 (i.e., the floor) for which is possible to correct the 
estimate of the 𝛼-quantile of the default rate distribution as the number of the time observations 
varies while keeping constant the size of the portfolios and given the same asset correlation 𝜔 =
24%. 

Figure 3: Estimates of 𝛽 with 𝑁 = 1,000, 𝜔 = 24% and different values of 𝑇 and 𝑃𝐷 

  
 
What  
Figure 3 makes clear is that, the shorter the time series of default rates (𝑇) is, the higher the 
confidence (𝛽) is needed to adjust the VaR, and even higher levels of 𝛽 are needed to adjust the 
VaR if the PD gets lower and lower. 
 
  

 
10 In numerical simulations we set ℓ = 0.01%. We observed that smaller values do not significantly improve the results, 
while being more computationally demanding to obtain. 
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Table 1: PD floors given different portfolio size (𝑁), time series length (𝑇) and correlation (𝜔) 

  T \ N 250 500 750 1000 1500 


 =

 2
4

%
 7 1.200% 0.700% 0.550% 0.450% 0.350% 

10 0.700% 0.400% 0.300% 0.250% 0.200% 

15 0.400% 0.200% 0.150% 0.150% 0.100% 

20 0.250% 0.150% 0.100% 0.100% 0.075% 


 =

 1
2

%
 7 0.750% 0.400% 0.300% 0.200% 0.175% 

10 0.450% 0.250% 0.200% 0.150% 0.100% 

15 0.300% 0.150% 0.100% 0.100% 0.050% 

20 0.250% 0.100% 0.100% 0.050% 0.040% 
 
  



A RATIONALE OF THE PD FLOOR UNDER THE IRB FRAMEWORK 

 

13 
 

Table 1 provides the minimum level of the 𝑃𝐷 (i.e. the floor) for which it is possible to correct the 

estimated α-quantile so that ℙ (𝐷𝑅 > 𝑞̂𝛼,𝛽(𝐷𝑅)) = 1 − 𝛼. This level can be seen as the floor for 

the PD given the combination of T, N and  Notice that the level of the floor obtained is not 
constant, as it varies with the size 𝑁  of the portfolio and the number 𝑇  of years used for the 
estimation of the 𝑃𝐷 parameter. In this table, two asset correlation values are considered, which 
are at the minimum (12%) and at the maximum (24%), as defined by Regulation for large corporates 
portfolios. The main result is: the shorter the time series of default rates and the smaller the size of 
the portfolio, the higher the PD-floor both with the minimum allowed asset correlation and (even 
more so) with the maximum level of correlation. 
 
 

5. Conclusions 

In this paper we studied the floor for the 𝑃𝐷 parameter, introduced by the Regulator in the IRB 
framework, in the context of credit risk and for low default portfolios: i.e. portfolios characterized 
by very low probability of default. By means of the Monte Carlo approach we provide a rationale 
for the PD-floor. The main results of this paper are the following. 
 
First of all, we showed the usefulness of introducing floors on the PD since, below certain values of 
the long run PD, the impact of the estimation error is such that it is not possible to correct the 
quantification of the quantile of the default rate distribution. 
 
Secondly, we have shown that the floor level should change based on the number of years used for 
the estimate, the size of the portfolio and the level of asset correlation. For example, we have seen 
that a floor of 0.05% (i.e. the regulatory value) may be necessary when 15 years of observations are 
available and the portfolio (single rating grade in case of calibration by grade) has 1500 positions, 
i.e. a fairly realistic situation. 
 
Thirdly, we provided a framework that could be used to calibrate the floor on case-by-case basis. 

For example, we have evidence that with small portfolios (200 obligors), high asset correlation 

(24%) and a short time-window (7 years) the PD-floor should be definitively higher. The results 

show that in general, for any combination of portfolio size, asset correlation and time series length 

there exists a limit for the PD under which it is not possible to adjust for estimation error. Moreover, 

this limit is not fixed and in particular it decreases with size. As such, it is possible that the PD limit 

is even lower than the Basel III floor. However, the Basel III floor appears adequate when the 

portfolio includes at least 1000 borrowers and the time series is longer than 15 years. These appear 

as normal conditions that can be usually found in practice. As such the Basel III floors appear as 

justified. These results could also serve to justify the additional requirement of avoiding the 

construction of excessively granular master scales. 

 
We have not explored the calibration of the floors, as our intention with this paper was to provide 

a justification for the introduction of the floors. We leave that item for further research, where an 

analysis of the trade-off between a simple approach like the Basel III one and a more complex 
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system of graduation of floors should also be considered. For example, we cannot exclude that 

having a single fixed floor or a system of floors would result in practically the same capital 

requirements.  

 
Our results hint towards the likelihood that the introduction of a floor can indeed mitigate the 
possibility that the risk measures become less reliable for low default portfolios. We also have 
highlighted that for small portfolios with low 𝑃𝐷 observed over a few years, there would be room 
to set the floor to even higher levels than the one envisaged by the Regulation. This last result, 
however, depends heavily on the level of the asset correlation 𝜔 : lower values of the asset 
correlation would lead to lower levels of the floors. However, estimating the asset correlation 
would entail introducing further sources of variability. Extending the analysis to the simultaneous 
estimation of PD and asset correlation parameters is left for further developments of the here 
proposed approach. 
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APPENDICES 

The following appendices report the meta-code that can be used for numerical estimation by means 
of the computational approach of Casellina et al. (2023). It should not be difficult for the reader to 
adapt this code to the most familiar programming language. Each appendix describes a function, 
with inputs and outputs, involved in the following algorithm describing the whole procedure. 
 
The algorithm needs of seven parameters to be set: the value of the probability of default 𝑃𝐷 =
0.1%; the value of the loading parameter 𝜔 = 24%; the value of confidence for the credit VaR 𝛼 =
99.9%; the size of the portfolio 𝑁 = 1,000; the number of years to be simulated 𝑇 = 10; the 
number of Monte Carlo trials 𝐵 = 10,000 ; 𝑥 = 5%  gives the fifth percentile of a Gaussian 
distribution for importance sampling (see Bolder (2018); sec. 8.5). The procedure consists in 
running the following programs detailed below. 
 

A. Run [𝑷𝑫̂, 𝝈𝑷𝑫̂
𝟐 ] = 𝑒𝑠𝑡_𝑃𝐷ℎ𝑎𝑡_𝑎𝑛𝑑_𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑃𝐷, 𝜔, 𝐵, 𝑁, 𝑇) 

B. Run [𝑫𝑹𝑻+𝟏, 𝑾] = 𝑔𝑒𝑛_𝐷𝑅_𝑇𝑝𝑙𝑢𝑠1_𝑎𝑛𝑑_𝐼𝑚𝑝𝑆𝑎𝑚𝑝𝑊𝑔𝑡(𝑥, 𝜔, 𝐵, 𝑁) 

C. Run [𝑽𝒂𝑹̂𝛼 , 𝑋𝛼] = 𝑒𝑠𝑡_𝑉𝑎𝑅𝑎𝑙𝑝ℎ𝑎_𝑎𝑛𝑑_𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠(𝛼, 𝜔, 𝑷𝑫̂, 𝑾) 

D. Run [𝛽̂, 𝛿̂, 𝑉𝑎𝑅̂𝛼,𝛽] = 𝑒𝑠𝑡_𝑐𝑜𝑛𝑓𝐵𝑒𝑡𝑎_𝑎𝑛𝑑_𝐴𝑑𝑗𝑉𝑎𝑅(𝛼, 𝜔, 𝑷𝑫̂, 𝝈𝑷𝑫̂
𝟐 , 𝑾, 𝐾) 

E. Compute Monte Carlo estimates but mainly get the estimated 𝑃𝐷𝑓𝑙𝑜𝑜𝑟  

 
One may now want to find results for a different parameter setting, for instance enlarging the 
observation window from 𝑇 = 10 to 𝑇 = 15, or reducing the loading factor from 𝜔 = 24% to 𝜔 =
12%, and so on. It just takes changing the parameters. 
 
 

A. Estimation of 𝑃𝐷 and its variance 

With a given parameters setting it simulates 𝐵 portfolios, as Monte Carlo trials, of 𝑁 exposures for 
a period of 𝑇 years depending on a given value of the 𝑃𝐷 parameter and of the loading factor 𝜔. It 

returns (𝐵 × 1) vectors for the estimate 𝑃𝐷̂ of the long-run PD (time average of default rates) and 

its variance 𝜎𝑃𝐷̂
2 , for each portfolio. Therefore, this function serves to generate data for credit risk 

analysis, as if a bank observed 𝐵 portfolios over 𝑇 years. 
 

function [𝑷𝑫̂, 𝝈𝑷𝑫̂
𝟐 ] = 𝑒𝑠𝑡_𝑃𝐷ℎ𝑎𝑡_𝑎𝑛𝑑_𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑃𝐷, 𝜔, 𝐵, 𝑁, 𝑇)  

𝑐 = Φ−1(𝑃𝐷) % A PD value assumed as known 

for b = 1 : B % b-th portfolio (b-th MC trial) 

 % simulates time series for 

 for t = 1 : T % t-th year 

  𝑧(𝑏, 𝑡) ∼𝑖𝑖𝑑 𝒩(0,1) % the systematic factor 

  𝑃𝐷𝑧(𝑏, 𝑡) =  Φ (
𝑐−𝑧(𝑏,𝑡)√𝜔

√1−𝜔
) % the conditional PD 
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  𝐷𝑅𝑧(𝑏, 𝑡) ∼𝑖𝑖𝑑 𝐵𝑖𝑛(𝑁, 𝑃𝐷𝑧(𝑏, 𝑡))/𝑁 % the default rate 

 end 

 𝑃𝐷̂(𝑏) =
1

𝑇
 ∑ 𝐷𝑅𝑧(𝑏, 𝑡)𝑡  % this is the “long-run PD” that estimates parameter 𝑃𝐷 

     % if 𝑃𝐷̂(𝑏) = 0 then 𝑉𝑎𝑅𝛼 will be 𝑞𝛼(𝑏) = 0  

     % hence 𝐷𝑅𝑇+1(𝑏) > 𝑞𝛼(𝑏) will be an exception  

                         % by construction and 𝜎𝑃𝐷̂
2 (𝑏) = 0 by definition  

 if 𝑃𝐷̂(𝑏) > 0      % variance: needed to compute the adjustment to the VaR  

          % (eq. (3) and Appendix D) 

  𝜎𝑃𝐷̂
2 (𝑏) = [Φ2 (Φ−1(𝐷𝑅𝑧(𝑏)), Φ−1(𝐷𝑅𝑧(𝑏)), (

0
0

) , (
1 𝜔
𝜔 1

)) − (𝑃𝐷̂(𝑏))
2

] /𝑇  

 else 

  𝜎𝑃𝐷̂
2 (𝑏) = 0  

 end 

end 

 

B. Generates DR at T+1 and Importance Sampling weights 

With a given parameters setting it simulates 𝐵 portfolios, as Monte Carlo trials, of 𝑁 exposures with 
a given loading factor 𝜔  at time 𝑇 + 1 . It returns (𝐵 × 1)  vectors of the default rates 𝐷𝑅𝑇+1 
together with importance sampling weights for each portfolio. As long as credit risk analysis and 
value at risk are needed over a 1-year horizon, this function generates this additional year for each 
of the previously simulated portfolios. The function also returns Importance Sampling weights for 
variance reduction to be used in VaR estimation. 
 

function [𝑫𝑹𝑻+𝟏, 𝑾] = 𝑔𝑒𝑛_𝐷𝑅_𝑇𝑝𝑙𝑢𝑠1_𝑎𝑛𝑑_𝐼𝑚𝑝𝑆𝑎𝑚𝑝𝑊𝑔𝑡(𝑥, 𝜔, 𝐵, 𝑁) 

𝑚 = Φ−1(𝑥) % default 𝑥 = 5%, to shift the Gaussian distribution 

for b = 1 : B % b-th portfolio (b-th MC trial) 

 𝑧𝑇+1(𝑏) ∼𝑖𝑖𝑑 𝒩(𝑚, 1) % systematic factor from the shifted Gaussian 

 𝑃𝐷𝑇+1
𝑧 (𝑏) =  Φ (

𝑐−𝑧𝑇+1(𝑏)√𝜔

√1−𝜔
) % conditional PD with the shifted systematic factor 

 𝐷𝑅𝑇+1(𝑏) ∼𝑖𝑖𝑑 𝐵𝑖𝑛(𝑁, 𝑃𝐷𝑇+1
𝑧 (𝑏))/𝑁  % default rate with shifted PD 

 𝑓(𝑏) = 𝜙(𝑧𝑇+1(𝑏)) % Gaussian PDF of the shifted systematic factor 

 𝑔(𝑏) = 𝜙(𝑧𝑇+1(𝑏) − 𝑚) % Gaussian PDF of the rescaled shifted systematic factor 

 𝑤(𝑏) =
𝑓(𝑏)

𝑔(𝑏)
 % Importance Sampling weights 

end 
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C. 𝑉𝑎𝑅𝛼 and exceptions 

The inputs are a given confidence 𝛼, the estimated PDs with loading factor 𝜔 as returned by the 

Appendix A function [𝑷𝑫̂, 𝝈𝑷𝑫̂
𝟐 ] = 𝑒𝑠𝑡_𝑃𝐷ℎ𝑎𝑡_𝑎𝑛𝑑_𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑃𝐷, 𝜔, 𝐵, 𝑁, 𝑇), and the importance 

sampling weights are returned by Appendix B function [𝑫𝑹𝑻+𝟏, 𝑾] =
𝑔𝑒𝑛_𝐷𝑅_𝑇𝑝𝑙𝑢𝑠1_𝑎𝑛𝑑_𝐼𝑚𝑝𝑆𝑎𝑚𝑝𝑊𝑔𝑡(𝑥, 𝜔, 𝐵, 𝑁) . It returns (𝐵 × 1)  vectors of 𝐵  portfolio 
estimates of the VaR at the chosen 𝛼-confidence together with a scalar for the relative share of 
portfolios for which the probability of the estimated default rate at the 𝑇 + 1 exceeds the VaR with 
the estimated 𝑃𝐷. 
 

function [𝑽𝒂𝑹̂𝛼 , 𝑋𝛼] = 𝑒𝑠𝑡_𝑉𝑎𝑅𝑎𝑙𝑝ℎ𝑎_𝑎𝑛𝑑_𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠(𝛼, 𝜔, 𝑷𝑫̂, 𝑾) 

B = numel(𝑷𝑫̂) % number of simulated portfolio 

for b = 1 : B % b-th portfolio (b-th MC trial) 

 if 𝑃𝐷̂(𝑏) > 0 

  𝑞̂𝛼(𝑏) = Φ (
Φ−1(𝑃𝐷̂(𝑏))+Φ−1(𝛼)√𝜔

√1−𝜔
) % estimate of 𝑉𝑎𝑅𝛼(𝑃𝐷̂): eq. (2) 

 else  

  𝑞̂𝛼(𝑏) = 0 

 end 

 if 𝐷𝑅𝑇+1(𝑏) > 𝑞̂𝛼(𝑏) 

  𝑋(𝑏) = 𝑤(𝑏) % cases of exception of 𝐷𝑅𝑇+1: if 𝑃𝐷̂(𝑏) = 0 then 

       % 𝑞̂𝛼(𝑏) = 0, hence 𝐷𝑅𝑇+1(𝑏) > 𝑞̂𝛼(𝑏) surely 

 else  

  𝑋(𝑏) = 0 

 end 

end 

𝑋𝛼 = ∑ 𝑋(𝑏)𝑏 / ∑ 𝑤(𝑏)𝑏  % empirical estimate of ℙ{𝑃𝐷 < 𝑉𝑎𝑅𝛼} = 𝛼 or ℙ{𝑃𝐷 > 𝑉𝑎𝑅𝛼} = 1 − 𝛼. 

 

D. Adjusting 𝑉𝑎𝑅𝛼 with 𝛽 confidence: recursive grid-search 

Computing 𝑉𝑎𝑅𝛼  with confidence 𝛼 = ℙ{𝑃𝐷 < 𝑉𝑎𝑅𝛼} needs knowing the long run 𝑃𝐷 that can 

be estimated with 𝑃𝐷̂ , therefore the estimator 𝑞̂𝛼  provides a biased estimate for 𝑉𝑎𝑅𝛼(𝑃𝐷̂) , 

which has an uncertainty due to the estimate 𝑃𝐷̂  of parameter 𝑃𝐷 . To adjust 𝑉𝑎𝑅𝛼(𝑃𝐷̂)  we 

introduce the upper-bound of a confidence interval for 𝑃𝐷̂: 𝑈̂(𝛽) = 𝑃𝐷̂ + Φ−1(𝛽)√𝜎𝑃𝐷̂
2 , see (3). 

This gives 𝑉𝑎𝑅̂𝛼
𝑎𝑑𝑗

= 𝑉𝑎𝑅̂𝛼,𝛽  with estimator 𝑞̂𝛼,𝛽(𝐷𝑅) = Φ (
Φ−1(𝑈̂(𝛽))+Φ−1(𝛼)√𝜔

√1−𝜔
)  of which we 

need to estimate the confidence 𝛽 as 𝛽̂ = ℙ{𝑃𝐷̂ < 𝑞𝛼,𝛽(𝑃𝐷̂)}. 

 



A RATIONALE OF THE PD FLOOR UNDER THE IRB FRAMEWORK 

 

18 
 

The inputs are the 𝐵  estimates of 𝑃𝐷  and their variance as returned by Appendix A function 

function [𝑷𝑫̂, 𝝈𝑷𝑫̂
𝟐 ] = 𝑒𝑠𝑡_𝑃𝐷ℎ𝑎𝑡_𝑎𝑛𝑑_𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑃𝐷, 𝜔, 𝐵, 𝑁, 𝑇) , the sampling weights as 

returned by Appendix B function [𝑫𝑹𝑻+𝟏, 𝑾] =
𝑔𝑒𝑛_𝐷𝑅_𝑇𝑝𝑙𝑢𝑠1_𝑎𝑛𝑑_𝐼𝑚𝑝𝑆𝑎𝑚𝑝𝑊𝑔𝑡(𝑥, 𝜔, 𝐵, 𝑁), the same 𝛼-confidence of Appendix C function 

[𝑽𝒂𝑹̂𝛼 , 𝑋𝛼] = 𝑒𝑠𝑡_𝑉𝑎𝑅𝑎𝑙𝑝ℎ𝑎_𝑎𝑛𝑑_𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠(𝛼, 𝜔, 𝑷𝑫̂, 𝑾)  and, of course, the same loading 

factor 𝜔 involved in previous functions. 
 

The function returns three scalars: the best (recursively grid-searched) numerical estimate 𝛽̂ of the 

confidence 𝛽 needed to adjust 𝑉𝑎𝑅𝛼(𝑃𝐷̂), a tolerance 𝛿̂ of this estimate, and the adjusted-VaR, 

𝑉𝑎𝑅𝛼
𝑎𝑑𝑗

(𝑃𝐷̂; 𝛽). 
 

function [𝛽̂, 𝛿̂, 𝑉𝑎𝑅̂𝛼,𝛽] = 𝑒𝑠𝑡_𝑐𝑜𝑛𝑓𝐵𝑒𝑡𝑎_𝑎𝑛𝑑_𝐴𝑑𝑗𝑉𝑎𝑅(𝛼, 𝜔, 𝑷𝑫̂, 𝝈𝑷𝑫̂
𝟐 , 𝑾, 𝐾) 

B = numel(𝑷𝑫̂) % number of simulated portfolios 

𝜖 = 10−9,𝜃0 = 5 − 𝜖, 𝜃1 = 𝜃0 + 5 % constants 

𝛽0 = 0, 𝑘 =  1 % initial condition 

while(𝑘 ≤ 𝐾) {% at the k-th iteration it evaluates 

𝔹𝑘 = [𝛽𝑘−1 − 𝜃0 ⋅ 10−𝑘: 10−(𝑘+1): 𝛽𝑘−1 + 𝜃1 ⋅ 10−𝑘] % the set of 𝛽 candidates 

𝐽𝑘 = 𝑛𝑢𝑚𝑒𝑙(𝔹𝑘) % number of 𝛽 candidates in the set 

𝕁𝑘 = {𝑗 ∈ ℕ|𝑗 ≤ 𝐽𝑘} % set of indices identifying the candidates 𝛽  

for j = 1 : 𝐽𝑘 % for each candidate 

  for b = 1 : B % for each simulated portfolio (MC trial) 

   if 𝑃𝐷̂(𝑏) > 0 

    𝑈̂𝛽(𝑏, 𝑗) = 𝑃𝐷̂(𝑏) + Φ−1(𝛽(𝑗))√𝜎
𝑃𝐷̂
2 (𝑏) % 𝛽(𝑗) = 𝔹𝑘(𝑗) is the j-th 

            % candidate at the k-th 

           % iteration: eq. (3) 

    𝑞̂𝛼,𝛽
𝐷𝑅 (𝑏, 𝑗) = Φ (

Φ−1(𝑈̂𝛽(𝑏,𝑗))+Φ−1(𝛼)√𝜔

√1−𝜔
) % 𝑉𝑎𝑅𝛼

𝑎𝑑𝑗
(𝑃𝐷̂; 𝛽) eq. (4) 

     if 𝐷𝑅𝑇+1(𝑏) > 𝑞̂𝛼,𝛽
𝐷𝑅 (𝑏, 𝑗) 

      𝑋(𝑏, 𝑗) = 𝑤(𝑏) % exception w.r.t. the  

                                                    % adjusted VaR 

     else 

      𝑋(𝑏, 𝑗) = 0 

     end 

   else % if 𝑃𝐷̂(𝑏) = 0 then 𝑈̂𝛽(𝑏, 𝑗) = 0 hence  

    𝑈̂𝛽(𝑏, 𝑗) = 𝑞̂𝛼,𝛽
𝐷𝑅 (𝑏, 𝑗) = 0   % 𝑞̂𝛼,𝛽

𝐷𝑅 (𝑏, 𝑗) = 0 therefore  

    𝑋(𝑏, 𝑗) = 𝑤(𝑏)          % 𝐷𝑅𝑇+1(𝑏) > 𝑞̂𝛼,𝛽
𝐷𝑅 (𝑏, 𝑗) is an exception 
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   end 

  end 

  𝑋𝛼,𝛽(𝑗) = ∑ 𝑋(𝑏, 𝑗)𝑏 / ∑ 𝑤(𝑏)𝑏  % the share of exceptions to the adjusted VaR 

  𝑌𝛼,𝛽(𝑗) =  |(1 − 𝛼) − 𝑋𝛼,𝛽(𝑗)|  % see eq. (6) 

end 

𝕁𝑘
0 = {𝑛 ∈ 𝕁𝑘|𝑛 = arg min

𝑗∈𝕁𝑘

[𝑌𝛼,𝛽(𝑗) − min{𝑌𝛼,𝛽(𝑗)}]} % subset of indices   

          % identifying the best 𝛽 at the 

          % k-th iteration 

𝑢𝑘 = min 𝕁𝑘
0 % index of the smallest best 𝛽 

𝑣𝑘 = max 𝕁𝑘
0 % index of the largest best 𝛽 

𝛽𝑘 = 𝔹𝑘(𝑢𝑘) % the best estimate of 𝛽 at the k-th iteration 

𝛿𝑘 = 𝔹𝑘(𝑣𝑘) − 𝔹𝑘(𝑢𝑘)   % associated tolerance 

𝑘 = 𝑘 + 1 % updates the iterator 

}% while-cycle closes 

𝛽̂ = max{𝛽𝑘} % estimate of 𝛽 such that 𝛽̂ = ℙ{𝑃𝐷̂ < 𝑉𝑎𝑅̂𝛼
𝑎𝑑𝑗

} 

𝛿̂ ∈ {𝛿𝑘|𝛽𝑘 = 𝛽̂} % tolerance 

 

E. Monte Carlo estimates for a given value of PD with confidence 𝛼 
over B portfolios of N exposures for T years with loading factor 𝜔 

Given the outcomes returned by previous functions, Monte Carlo estimates can be computed on 
the basis of the initial parameters setting 

𝑃𝐷̂∗ =
1

𝐵
∑ 𝑃𝐷̂(𝑏)𝑏  % Monte Carlo estimate of the long run 𝑃𝐷  

𝑞̂𝛼
∗ = Φ (

Φ−1(𝑃𝐷̂∗)+Φ−1(𝛼)√𝜔

√1−𝜔
) % estimate of 𝑉𝑎𝑅̂𝛼 

𝑃𝐷̂𝛼
∗ = Φ (

Φ−1(𝕢̂𝛼
∗ )+Φ−1(𝛼)√𝜔

√1−𝜔
) % the Worst-Case-DR given 𝑉𝑎𝑅̂𝛼 

𝜎𝑃𝐷̂∗
2 = [Φ2 (Φ−1(𝑃𝐷̂∗), Φ−1(𝑃𝐷̂∗), (

0
0

) , (
1 𝜔
𝜔 1

)) − (𝑃𝐷̂∗)
2

] /𝑇 % variance of 𝑃𝐷̂∗ 

𝑈̂𝛽
∗ =  𝑃𝐷̂∗ + Φ−1(𝛽̂)√𝜎𝑃𝐷̂∗

2
 % adjustment for 𝑉𝑎𝑅̂𝛼: upper bound of the confidence interval 

𝑞̂𝛼,𝛽
𝑃𝐷̂∗

= Φ (
Φ−1(𝑈̂𝛽

∗ )+Φ−1(𝛼)√𝜔

√1−𝜔
) % adjusted VaR, 𝑉𝑎𝑅̂𝛼

𝑎𝑑𝑗
= 𝑉𝑎𝑅̂𝛼,𝛽 

𝑃𝐷𝛼,𝛽
∗ = Φ (

Φ−1(𝑞̂𝛼,𝛽
𝑃𝐷̂∗

)+Φ−1(𝛼)√𝜔

√1−𝜔
) % Worst Case Default Rate given 𝑉𝑎𝑅̂𝛼

𝑎𝑑𝑗
= 𝑉𝑎𝑅̂𝛼,𝛽,  

                        % the PD-floor 
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F. Stability analysis of parameters estimates 

In this section, we provide stability analysis results about the estimates of the confidence 𝛽. We 
consider an extreme set up of the main parameters: the confidence 𝛼 = 99.9, a portfolio size of 
𝑁 = 1,000 expositions, a theoretical 𝑃𝐷 = 1%, a loading coefficient 𝜔 = 24% and a time series 
length of 𝑇 = 7 years. With this setting we dealt with 7 experiments, that differ only with respect 
to the number of simulated portfolios (Monte Carlo trials) as reported in Error! Reference source 
not found.. Moreover, each experiment has been run 100 times. 

Table 2 Stability analysis experiments 

EXP # MC trials Min p1 p5 p50 p95 p99 Max 

1 100 0.5431 0.5606 0.6427 0.9316 0.9978 0.9997 0.9997 
2 1.000 0.7620 0.7620 0.8066 0.9083 0.9775 0.9934 0.9995 
3 10.000 0.8652 0.8718 0.8874 0.9068 0.9267 0.9417 0.9505 
4 100.000 0.8920 0.8922 0.8946 0.9049 0.9135 0.9226 0.9290 
5 500.000 0.8993 0.8997 0.9011 0.9057 0.9087 0.9162 0.9194 
6 1.000.000 0.9001 0.9003 0.9017 0.9054 0.9088 0.9137 0.9168 
7 2.000.000 0.9002 0.9010 0.9024 0.9057 0.9070 0.9111 0.9142 

         

EXP # MC trials range95 range99 average stderr outliers 
range99/ 
average 

range99/ 
p50 

1 100 0.3551 0.4390 0.8857 0.0116 0.0000 49.57% 47.13% 
2 1,000 0.1709 0.2314 0.9039 0.0050 0.0000 25.60% 25.47% 
3 10,000 0.0394 0.0700 0.9065 0.0013 0.0000 7.72% 7.72% 
4 100,000 0.0189 0.0304 0.9050 0.0006 0.0000 3.36% 3.36% 
5 500,000 0.0076 0.0165 0.9052 0.0003 0.0000 1.82% 1.82% 
6 1,000,000 0.0072 0.0134 0.9051 0.0002 0.0000 1.48% 1.48% 
7 2,000,000 0.0046 0.0101 0.9053 0.0002 0.0000 1.11% 1.11% 

 

The first part of Error! Reference source not found. reports the main sample quantiles of the 
empirical distribution of the 𝛽 estimates in each experiment. As the number of trials increases, the 
variability of the results is reduced, and quantiles stabilise with a narrow difference between the 
minimum and the maximum: from [0.5431,0.9997]  in Experiment 1 with 100  replicates to 
[0.9002,0.9142] in Experiment 7 with 2,000,000 replicates. 
 
To better visualise this outcome, consider Error! Reference source not found. and the second part 
of Error! Reference source not found. where the 𝑟𝑎𝑛𝑔𝑒99 , which evaluates the difference 
between the 99-th and the 1-st percentiles, is reported. With 100 portfolios, the 𝑟𝑎𝑛𝑔𝑒99 is about 
0.4390; with 500,000 portfolios it decreases to 0.0165; finally, it reaches 0.0101 if 2,000,000 
portfolios are simulated. This means that our procedure provides stable estimates of the 
confidence 𝛽 that converges to an average value 𝛽 = 0.9053 with a small standard error of about 
0.02% and a less than 0.001% of outliers in each experiment, i.e., an exception can be observed 
once in a million. Finally, the ratios of the 𝑟𝑎𝑛𝑔𝑒99 to the average or to the median (𝑝50) become 
equivalent even with a small number of simulated portfolios (e.g., 1,000), and they are significantly 
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reduced as far as the number of simulated portfolios increases. With 2,000,000  simulated 
portfolios, the 𝑟𝑎𝑛𝑔𝑒99  is about 1.11%  of the average or the median. In other words, the 
empirical estimates of the confidence 𝛽 converge what can be considered the “true” value with the 
specified parameters’ setting. 
 

Figure 4 Stability analysis results 
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