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Abstract

We propose a measure for interconnectedness: BSLoss, the banking system loss which de-
scribes the increase in expected credit losses due to contagion risk. For this purpose, we construct
an algorithm to model the transmission of credit risk in the interbank market via a multiple-round-
process. Core to the algorithm is the simulation of how a deterioration of credit quality of debtor
banks spills over to creditor banks via the interbank credit channel. The transmission of an ex-
ogenous shock to one or a group of banks is modelled on the basis of the empirical relationship
between the Tier 1 capital ratio and the probability of default of banks. As a consequence of the
contagion mechanism a devaluation of banks’ assets and an increase in credit losses can be ob-
served. Compared to other measures for interconnectedness BSLoss comprises several merits:
It is easy to interpret in economic terms, it reacts sensitively even to small changes in credit risk,
and it accounts for the recursive nature of the banking network. The algorithm may be applied to
analyze the effectiveness of systemic capital buffers to curb contagion risk in the banking system.

1 Introduction

Credits between banks have a two-sided effect on financial stability. On the one hand, interconnected
banks may improve risk sharing and diversification, thereby alleviating their risk position to idiosyn-
cratic shocks, as noted by Allen and Gale (2000), and Freixas, Parigri, and Rochet (2000). On the
other hand, the network exposes all banks to the risk of contagion, that is, an adverse shock to one
bank or a group of banks can spread to other interconnected banks, which results in distress, or - in
the worst case - in a default of these banks. In this spirit, BCBS (2013) classifies the level of inter-
connectedness as one main driver for systemic risk in the banking system.1 In the light of the recent
financial crisis the risk of contagion has increasingly become a matter of importance to regulators.
Therefore, this paper focuses on the adverse externalities interbank credits may have on the stability
of the banking system.

When analyzing interconnectedness, it is essential to identify an economically meaningful unit to
measure its costs. We propose a model to measure interconnectedness by the increase in expected
credit losses of the banking system caused by contagion through interbank credits. The work builds

1Systemic risk, defined by BIS, IMF, and OECD (2001), is a risk, that an event will trigger a loss of confidence in a
substantial portion of the financial system that is serious enough to have adverse consequences for the real economy.
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on the DebtRank introduced by Battiston, Puliga, Kaushik, Tasca, and Caldarelli (2012). Our model
allows to monitor the build-up of vulnerabilities over time and reason ex-ante macroprudential actions.
The effect of different types of shocks and different policy instruments can be analyzed consistently.
The model is flexible so that other financial institutions apart from banks (eg hedge funds, insurers
etc.) could also be included in the study.

The paper contributes in two ways – one is of a descriptive nature and the other of a normative
nature. First, our model enhances the DebtRank, both in terms of the theoretical and empirical foun-
dation. In our model the credit loss is derived from well-established theoretical credit risk measures.
It reflects the balance sheet loss of the banking system due to a credit deterioration of banks under
a stressed scenario. In the stressed scenario we simulate an increase in the probability of default of
banks, given a shock has hit one bank or a group of banks and is transmitted via the channel of inter-
bank credits. The simulation process is empirically founded by a multivariate logit-regression which
explains the increase in the probability of default of a bank by a deterioration in its regulatory variables
(eg Tier 1 capital ratio). Second, the paper contributes to a better understanding of the effectiveness
of different policy actions to different types of shocks. In this respect, simulations with alternative
additional capital buffers imposed on banks and different types of shocks from inside or outside the
banking system (eg burst of a housing bubble) are compared to each other and conclusions are drawn.

The paper proceeds as follows. Section 2 gives an overview on the relevant literature with the
focus on the DebtRank. The benefits of our model as compared to the DebtRank are set out. In
section 3 we describe how contagion spreads across an interbank credit network and develop a suitable
algorithm to capture the phenomenon. Section 4 presents the results of two policy experiments. In
section 5 we discuss policy implications in the context of the ongoing debate on regulatory reform
and conclude.

2 Literature

Interconnectedness in the banking system may be characterized by different types of contagion chan-
nels. For example, Jobst (2012) provide an interesting analysis by focusing on the liquidity channel.
He combines option pricing with market information and balance sheet data to generate a stochas-
tic measure of the frequency and severity of a system wide liquidity event. Upper (2010) provides
a comprehensive overview of different simulation models which study different types of contagion
channels on the liability and the asset side, such as common liquidity pools, interbank lending and
payment systems. In our analysis, contagion is concerned with the interbank credit channel and how
a deterioration in credit quality of one bank or a group of banks spreads in the banking system and
adversely affects the credit quality of other interconnected banks.

Most of the existing studies about the adverse effects of interbank credits on the stability of the
banking system can be attributed to two strands of literature. The first one refers to default cascade
models. The intuition behind this approach is clear: A bank default triggers a loss on interbank credits
for its creditor banks. This, in turn, may trigger a default of the creditor banks and a corresponding
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loss for the creditor’ creditor banks, and so forth. In this spirit, Eisenberg and Noe (2001) propose a
static model which is characterized by a clearing payment vector. This vector represents a function
of the operating cash flows of the members of the financial network and satisfies the requirements
of limited liability, debt priority and pro-rata reimbursements. Rogers and Veraart (2012) extend the
modelling framework of Eisenberg and Noe (2001) by introducing default costs in the system. They
analyze situations in which solvent banks have the incentives to rescue failing banks and conclude how
such a rescue consortium might be constructed. Focusing more on empirical findings, Mistrulli (2011)
explores how banks’ defaults propagate within the Italian interbank market by using a unique data set
including actual bilateral exposures. He finds that contagion based on actual exposure patterns tends to
exceed contagion based on hypothetical exposure patterns (eg entropy maximization method) which
previous works often had to rely on due to the lack of actual bilateral exposure information. Memmel
and Sachs (2011) develop a default cascade model with stochastic loss given defaults (LGDs) which
follow approximately the U-shaped Beta distribution and is calibrated on realized recovery rates from
defaulted interbank exposure. They conclude that contagion in the German interbank market can occur
and that the number of bank defaults increases on average if a stochastic LGD is assumed instead of a
constant one.

The second strand of literature refers to centrality measures, which aim at identifying the most
important node in a network. Different centrality measures exist which reflect different interpretations
of importance. Landherr, Friedl, and Heidemann (2010) provide a critical review of different centrality
measures. One of the most simplistic measures is the degree centrality which takes into account the
connection one node has to other nodes. More complex measures are recursive centrality measures.
According to this concept, the centrality of one node in the network does not only depend on the degree
of its nodes, but also on the centrality of those nodes it is connected with. This means, the centrality
(or level of interconnectedness) of one node spreads across the network and influences the degree of
centrality of the direct and indirect neighboring nodes. As a result, the centralities of all (connected)
nodes influence each other recursively. Recursive centrality can also be described as a weighted
sum of all direct and indirect connections of any length. This concept is formalized mathematically
in the standard eigenvector centrality by Bonacich (1972). Another version of recursive centrality
measures is the PageRank, developed by Google’s co-founder Larry Page, to assess the importance
of websites. In the wake of the recent financial crisis the concept of recursive centrality measures has
gained popularity as an indicator for interconnectedness in the banking system. To name a few, ECB
(2012) and Brunnermeier, Clerc, and Scheicher (2013) applied recursive centrality measures to assess
structural vulnerabilities and the level of interconnection of banks. Martinez-Jaramillo, Alexandrova-
Kabadjova, Bravo-Benitez, and Solorzano-Margain (2014) propose a unified measure of centrality.
Applying the Principal Component Analysis Martinez-Jaramillo et al. (2014) suggest a unique index
of centrality which incorporates information of several centrality measures.

Default cascade models and centrality measures have their merits and limitations, as outlined by
Battiston et al. (2012). Default cascade models provide an easy economic interpretation of contagion.
Their measure, ie the loss occurring in the banking system consequently to a bank’s default, enables to
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draw comparisons between different banking systems and with one banking system at various points
in time. However, default cascade models are typically restricted to an ex-post view, because they
assume that only a default of a bank, ie a materialized loss, can result in adverse spill-over effects.
This ignores the fact that a relatively small credit deterioration of a bank could already have negative
consequences for the creditor banks’ solvency, because their portfolio is exposed to a higher expected
loss from an ex-ante perspective. In this respect, default cascade models can be characterized as
backward-looking and less responsive to risk.

By contrast, centrality measures can be described as forward-looking and more responsive to risk;
vulnerabilities due to an increased level of interconnectedness can be captured before losses have
materialized. However, centrality measures are hard to interpret in economic terms as opposed to other
forward-looking measures, such as the expected loss which is expressible in monetary units. Thus,
quantifying adverse effects from interconnectedness and reason macroprudential actions to mitigate
these effects are difficult to achieve based on centrality measures. Finally, they are not suitable to
compare between different banking systems and for one banking system at various points in time.

Against this background, Battiston et al. (2012) develop the DebtRank, which combines the ben-
efits of recursive centrality measures and default cascade models to overcome the above mentioned
limitations. The DebtRank aims at measuring the economic loss caused by contagion after some pre-
defined shock has hit one bank or a group of banks. In essence, the transmission of a shock is mirrored
by an increase in the level of distress of the interconnected banks. Battiston et al. (2012) describe the
level of distress for banks by a continuous variable ranging between 0 and 1, where the lower bound-
ary means ’undistressed’ and the upper boundary means ’default’. They construct an algorithm which
postulates how banks’ levels of distress depend on each other. Accordingly, the level of distress of a
bank, say bank A, is influenced by the level of distress of its debtor banks weighted by the relative
exposure. The relative exposure describes a debtor specific ratio and equals the credits between bank
A and its debtors over the core capital of bank A. It reflects the relative portion of capital of bank
A which would be lost in case of a default of the debtors banks and a recovery value of 0. To tame
reverberations it is assumed each bank can propagate its distress only once. In the simulation, each
bank starts with an identical initial level of distress of 0. After an exogenous shock has hit one bank
or a group of banks - ie their level of distress is set to some amount between greater 0 and equal 1
- the algorithm calculates the new level of distress for all banks. To measure the economic loss the
difference between the banks’ total assets weighted by the levels of distress after contagion and before
contagion is calculated.

The DebtRank provides plenty of interesting insights into the adverse effects of interconnected-
ness. However, in terms of theoretical interpretation and empirical analysis the DebtRank leaves room
for some refinements. First, the level of distress, one key variable of the DebtRank, remains abstract
and unobservable. Thus, we propose a model which interprets the banks’ level of distress as their
level of credit quality, which can be observed by their (historical) probability of default. Second, the
contagion and mutual interference process of banks’ distress postulated by the DebtRank is intuitive,
but lacks an empirical verification that distress just spreads in this way; eg why should the impact
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of distress between banks be just proportional to the relative exposure? To address this issue, our
model derives the contagion effect from the empirically verifiable relationship between a bank’s Tier
1 capital ratio and its probability of default. Third, the DebtRank allows only once for reinfection
between banks. However, we show that risk propagation, which captures multiple round effects, can
be essential to assess the persistence of the adverse effects of contagion accurately.

3 Methodology

To simulate the contagion effect we focus on assessing the impact a change in the debtor bank’s prob-
ability of default (PD) has on the creditor bank’s PD. In this respect, we choose a two-step approach:
First, we investigate the impact the debtor bank’s PD has on the creditor bank’s Tier 1 capital ratio –
defined as Tier 1 capital over risk-weighted assets (RWA). Second, we analyze the impact bank’s Tier
1 capital ratio has on its own PD.

In the first step, we estimate the influence the debtor bank’s PD has on the creditor bank’s Tier 1
capital ratio following regulatory and accounting requirements. In essence, we aim to mimic banks’
risk management practices based on external reporting requirements. An increase in the debtor bank’s
PD results in a deterioration of the credit quality of the portfolio of its creditor banks because the
creditor banks may be exposed to higher expected credit losses and to higher unexpected credit losses.
The former one is captured by an asset devaluation on the creditor banks’ balance sheet according to
the applicable accounting standards, eg in the form of loan loss allowances (LLA) which are deducted
from their Tier 1 capital. The latter one is reflected by higher regulatory charges according to the
Basel Accords, eg in the form of RWA. Both effects drive down their Tier 1 capital ratios. In the
second step, we use a logit-regression to estimate the percentage point change of the PD of a bank
given a one percent change of its Tier 1 capital ratio. According to Packer and Tarashev (2011) high
quality capital measures, such as the Tier 1 capital ratio, are one important factor to assess bank’s
credit quality. To isolate the effect the Tier 1 capital ratio has on the PD, a set of control variables are
included in the logit-regression, which reflect (but are not limited to) profitability and liquidity ratios.

We then develop an algorithm which iteratively computes the change in each bank’s PD after an
exogenous shock has hit one bank or a group of banks. Exogenous shocks reflect a sudden deterio-
ration in credit quality of the shocked banks resulting in default or distress. In our algorithm a bank
defaults if it is assigned a PD of 1 during the iteration. Additional stress the banks suffer from is
expressed through the assignment of PDs which are higher – but still smaller than 1 – compared to the
respective PDs which have been assigned in previous iteration steps. Given the relationship between
the debtor bank’s PD and the creditor bank’s PD, default or distress of one bank or a group of banks
may result in a subsequent increase of PDs of its creditor banks, and the creditors’ creditor banks,
and so on. In order to capture this mechanism the algorithm models a multiple round contagion effect
where the PD of all the creditor banks deteriorates, which are connected (directly and indirectly) with
those debtor banks subject to the exogenous shock. The increase in banks’ PDs results in higher ex-
pected credit losses, and thus a devaluation of banks’ assets, which we propose as a measure for the
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adverse affects of interconnectedness caused by contagion through interbank credits.

3.1 General algorithm

After having explained the conceptual idea of our algorithm in a narrative way we now put it into a
mathematical format. Before doing so we need to introduce some notation. Let us denote by Wij

the interbank credit from bank i to bank j. The variable P0(i) describes the PD bank i has in the
“unstressed” environment at time t = 0. Let furthermore Pt(i|A) be the PD of bank i at time t
conditional on the exogenous shock event A in t = 1. Each Pt(i|A) is a continuous variable with
Pt(i|A) ∈ [0, 1]. The statement Pt(i|A) = 1 is equivalent to the default of bank i at time t.

The starting point in the generation of stressed PDs is a series of capital and leverage ratios, which
are updated subsequently for all banks in each step of the iteration. The leverage ratio for bank i at
time t is defined by Tier 1 capital divided by total assets (net of LLA), ie Levi,t =

T ier1i,t
TAi,t

. In contrast,

we use the Tier 1 capital ratio CapRati,t =
Tier1i,t
RWAi,t

as a risk-based measure to describe the solvency
of bank i at time t according to supervisory capital standards. In order to compute the risk-weighted
assets RWAi,t we follow the methodology adopted for the Internal Ratings Based (IRB) approach of
the Basel 2 / Basel 3 supervisory capital frameworks. To comply with the rules of the Foundation IRB
approach for exposure to the banking sector we apply for the loss given default LGD = 45% and for
the residual maturity M = 2.5.

First, the algorithm updates in parallel total assets, Tier 1 capital and risk-weighted assets. Using
the notation introduced above we obtain the following expression for the changes of these quantities
from one period to the next:

TAi,t = TAi,t−1 −
∑
j

Wij · LGD · (Pt−1(j|A)− Pt−2(j|A))

Tier 1i,t = Tier 1i,t−1 −
∑
j

Wij · LGD · (Pt−1(j|A)− Pt−2(j|A))

∆tRWj = max{0, RW (Pt−1(j|A), LGD,M)−RW (Pt−2(j|A), LGD,M)}

RWAi,t = RWAi,t−1 +
∑
j

∆tRWj ·Wij

Note, that including the maximum in the formula for the change in risk-weights ∆RW takes into
account some specifics of the IRB risk-weight functions. From a certain threshold value of PD the
risk-weights do not necessarily increase anymore given that risk-weighted assets are defined in such a
way that they only cover unexpected losses. Further technical details on the computation of Tier 1i,t,
TAi,t and RWAi,t can be found in the Appendix A1.

Second, our algorithm exploits the marginal effect a one percentage point change of bank’s Tier 1
capital ratio has on its PD which is given by

βcaprat · (Pt−1(i|A)− Pt−1(i|A)2), (1)
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see Appendix A2 for a step-by-step development of this term. This marginal effect is important for
our approach as it is used in our algorithm to compute the change in the default probability of each
bank directly from the change in the capital ratio.

We extract the coefficient βcaprat from the logit-regression

Pr(defaultt) = F (α+ βcapratln(CapRatt−1) + γXt−1),

where F (z) = ez/(1 + ez) is the cumulative logistic distribution and Pr(defaultt) is the probability
of the dependent variable equalling a "success" in period t. In our case a "success" means a default.
In this regression the matrix Xt−1 stands for the observation of a set of the control variables reflecting
the following characteristics of a bank: capital adequacy, asset quality, quality of management, prof-
itability, and liquidity. We use the variables of the year t − 1 to explain the defaults in year t. More
detailed specifications and regression results can be found in Table 3 in Appendix A2.

Remember that the variable P0(i) describes the PD prior to the event A, ie at t = 0. Now, denote
by S the set of banks subject to the exogenous shock. We assume that the conditional PDs at time
t = 1 can be expressed by

P1(i|A) = P0(i) + ϕ ≤ 1 for all i ∈ S

P1(i|A) = P0(i) for all i /∈ S.

The variable ϕ represents a positive parameter reflecting the level of stress imposed on S, which, in
the extreme case, leads to a bank default, ie P1(i|A) = 1.

The algorithm for t ≥ 2 updates in parallel all the conditional probabilities of default Pt(i|A)

taking into account all the conditional probabilities of default Pt−1(i|A) as well as Tier 1 capital
Tier 1i,t−1, total assets TAi,t−1 and risk-weighted assets RWAi,t−1 of the previous round for all
banks i. A bank is considered as defaulted and its PD is set to 1, if some pre-defined default criteria
are met. The default criteria may be reflected by a hard default, such as Tier1 < 0. More sensitive
default criteria may be reflected by regulatory requirements, or other boundaries which are not set
explicitly by the supervisor but do also influence bank’s credit quality. In our algorithm, we choose
lower boundaries for the Tier 1 capital ratio and leverage ratio as default criteria, which we describe
by CapRatcrit and Levcrit. In principle, the specific values for CapRatcrit and Levcrit are to be
configurated in accordance with the banking-specific environment the algorithm is applied to. For
banks which do not default, the probability of default increases in accordance with the change in the
probability of default of its counterparties according to expression (1).

The dynamic stops after a finite number of multiple steps, let us say at t = T . Otherwise, bilateral
interbank connections would re-infect each other ad infinitum. In this respect, we deviate from the
DebtRank where re-infection is allowed only once. In our opinion, third and more round effects are
essential to assess the persistence and severity of contagion risks accurately.

7



The box below includes a formalized version of the algorithm.

Contagion Algorithm

P1(i|A) = P0(i) + ϕ ≤ 1 with ϕ > 0 for all i ∈ S, and P1(i|A) = P0(i) for all i /∈ S
t = 2, iterate

Pt(i|A) =

{
1 if CapRati,t < CapRatcrit or Levi,t < Levcrit

min{1, Pt−1(i|A) + βcaprat · (Pt−1(i|A)− Pt−1(i|A)2) ·∆tln(CapRati)} else,

t = t+ 1, until PT (i|A)− PT−1(i|A) < ε with a small value ε > 0.

In the algorithm ∆tln(CapRati) reflects the percentage change in Tier 1 capital ratio which is
given by

∆tln(CapRati) = ln(CapRati,t)− ln(CapRati,t−1) = ln(
Tier1i,t
RWAi,t

)− ln(
Tier1i,t−1
RWAi,t−1

).

Some caution is necessary when the PDs are updated in each step of the iteration since the formula
included in the box holds only for infinitesimally small changes of ln(CapRati). For larger changes
of the capital ratio rules from calculus give us the expression

Pt(i|A) =

(
CapRati,t
CapRati,t−1

)β (
Pt−1(i|A)
Pt−1(i|A)−1

)
(

CapRati,t
CapRati,t−1

)β (
Pt−1(i|A)
Pt−1(i|A)−1

)
− 1

, (2)

see Appendix A3 for a derivation.

We may assume that the algorithm terminates because the sequence P0(A), P1(A),..., Pt(A),... of
vectors of the PDs has a monotone limit by the following reasons:

• By construction it has the vector 1 (each component equals 1) as an upper bound.

• It is monotone increasing because βcaprat > 0, Pt−1(i|A)− Pt−1(i|A)2 ≥ 0 and
CapRati,t+1 < CapRati,t.

• It is not continuous from below because banks may fail. They are assigned a PD of 1 in
case their Tier 1 capital ratio or leverage ratio fall below CapRatcrit or Levcrit. However, the
iteration can be restarted after each failure. Due to the fact that the number of banks is finite the
existence of a monotone limit is ensured.

The algorithm gives us the following result for the considered population of banks:

BSLoss =
∑
j

(TAj1 − TAjT ) (3)

where T is the numbers of iterations carried out by the contagion algorithm.
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The quantityBSLossmeasures the balance sheet loss of the banking system induced by the event
A. Using this approach a ranking of the banks’ level of interconnectedness may be derived. BSLoss
takes into account the reduction in total assets due to an increase in credit losses between t = 1

and t = T . In case the event A is the default of a single bank, we may rank the bank’s level of
interconnectedness in accordance to the banking system loss its default induces to the system. In this
regard, we can determine those banks which are too-interconnected-too-fail.

Given that the matrix W describes a very complex network it turns out to be difficult to describe
properties of each sequence PDt(i|A) or for the BSLoss that go beyond the fact that these quanti-
ties converge. For this reason we use a simple academic example to develop some intuition for the
algorithm and the sequences it generates. The academic example can be found in Appendix A4.

3.2 Extensions of the algorithm

Our model offers various implications for macroprudential policy. For example, the model can be used
to analyze the level of banking system loss for different types of shocks (eg shocks stemming from
outside the banking system). Furthermore, it allows us to compute by how much the banking system
loss will be absorbed if we increase the Tier 1 capital for certain banks, in particular for those banks
which are considered as highly interconnected. This makes our algorithm a useful tool in determining
the size of capital surcharges to curb contagion risks. In this regard, we introduce two extensions to
our general algorithm.

3.2.1 Shock from outside the banking system

A shock from outside the banking system, say from sector Mg, is reflected by a deterioration of the
respective credit risk parameters, namely the probability of default PDMg and the loss given default
LGDMg, which are assigned to the exposure Mgi bank i has to the concerned sector. We denote
such a deterioration by ∆PDMg and ∆LGDMg. As a result, bank’s Tier 1 capital ratio decreases and
its RWA increases, because the bank’s portfolio is exposed to higher expected and unexpected credit
losses (depending on the bank’s individual size of the exposure Mgi).

The new levels of bank’s total assets, Tier 1 capital ratio and RWA after the shock from outside
the banking system at t = 0 is given by

TAsi,0 = TAi,0 −∆LGDMg ·∆PDMg ·Mgi

Tier1si,0 = Tier1i,0 −∆LGDMg ·∆PDMg ·Mgi

∆RW s
i,0 = max{0, RW (∆PDMg,∆LGDMg, 1)}

RWAsi,0 = RWAi,0 + ∆RW s
i,0 ·Mgi.

In the formulae we use the superscript s to indicate that the variable results from a shock outside the
banking system. We use ∆RW s

i,0 to refer to the change in the risk weight of the exposure Mgi due
to the changed PDMg and LGDMg. The corresponding percentage change in Tier 1 capital ratio is
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given by

∆0ln(CapRatsi ) = ln(CapRatsi,0)− ln(CapRati,0) = ln(
Tier1si,0
RWAsi,0

)− ln(
Tier1i,0
RWAi,0

).

The resulting change in Tier 1 capital ratio translates into an increase in bank’s own PD according
to βcaprat from the logit-regression.

At t = 1 the extended version of the algorithm determines the bank-specific shocked PDs. We
obtain

P1(i|A) =

{
1 if CapRati,t = 0

min{1, P0(i|A) + βcaprat(P0(i|A)− P0(i|A)2)∆0ln(CapRatsi )} else

Banks’ PDs given by these formula describe the direct impact of the losses that arise from an
adverse development in sector Mg. The PDs generated in the subsequent iteration steps (ie t ≥ 2) are
then calculated according to the general algorithm above. In this way, the algorithm shows how the
shock from sector Mg propagates through the interbank network and results in higher PDs for banks.
Finally, the banking system loss induced by the shock from sectorMg can be derived according to the
expression (3). Importantly, BSLoss does only take into account the contagion effect between banks,
which is initiated from the shock in sector Mg. In other words, any possible direct adverse effects of
the shock reflecting a reduction in total assets net of loan loss allowances between t = 0 and t = 1

are excluded from BSLoss.

3.2.2 Capital surcharges to curb contagion risks

Capital requirements can be designed in such a way that they provide an incentive for banks to in-
ternalize negative externalities arising from interconnectedness in their ex-ante decision-making. We
propose an extension to our algorithm, which may help to assess the effectiveness of capital surcharges
to curb contagion risks. In principle, the source of the initial shock could be from inside or outside
the banking system. In the following, we focus on a shock from outside the banking system, namely
from sector Mg.2 As a buffers size we propose k percentage points times the share of exposure to
sector Mg in total bank assets to mitigate contagion risks stemming from this sector. That means, if a
bank’s portfolio would solely consist of assets to sector Mg the increase in the capital ratio would be
k percentage points. The new capital is given by

Tier1Pi,0 = Tier1i,0 + 0.0k ·RWAi,0 ·
Mgi
TAi,0

.

In the formula we use the superscript P to indicate that the variable is set by the regulator. Instead
of the original capital ratio we may use the capital ratios after imposing the bank-specific buffer as

a starting point for the algorithm, ie CapRatPi,0 =
T ier1Pi,0
RWAi,0

. As a result, the new Tier 1 capital ratio

2In principle, k could also be applied to exposure banks have to other banks to take into account the costs of contagion
stemming from the banking system.
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translates into a decrease in bank’s own PD according to βcaprat from the logit-regression which we
may use as the starting PD in the algorithm. To evaluate the effectiveness of the introduction of an
additional capital buffer we can then rely on the expression (3). In this regard, we compare the banking
system loss according to alternatives values for k > 0 with the banking system loss according to the
base case for k = 0.

4 Policy applications

As outlined in chapter 3 our algorithm can be used in various kinds of analyzes related to macropru-
dential supervisory policies. In the area of macroprudential supervision it is essential to have detailed
knowledge on the relative importance of single banks in the system. Supervisory resources might be
assigned according to this relative importance. Also, the measurement of consequences for the bank-
ing system of a shock stemming from disturbances in a sector from outside the banking system, is an
objective for supervisory activities.

For macroprudential supervisory policy makers it is equally important to be in the position to
assess the consequences of certain policy measures they plan to implement. Our measure also has
the advantage to obtain economically interpretable cardinal differences between the benefits of dif-
ferent scales of policy intervention. In this section we will present two exemplary policy applications
of the algorithm including an assessment of the benefits of certain policy measures that might be
implemented.

4.1 Data

The performed analysis is based on year-end data for 2013. Interbank credits are taken from Deutsche
Bundesbank’s credit register of large exposures and loans of 1.5 million AC or more. The further
variables used in the algorithm stem from various sources: Tier1-Capital, Total Assets and RWAs
are taken from German banks’ reporting systems to the Deutsche Bundesbank, such as the Common
Reporting Framework (CoRep) and the Banking Statistics (BiSta). The unconditional PDs in t = 0

for German banks are derived from their credit ratings assigned by the three major rating agencies,
namely Fitch Ratings, Moody’s, and Standard & Poor’s. In order to combine the information obtained
from the three rating agencies, the average of the historically observed default rates per credit ranking
is calculated. If a bank is not rated by one of the three major rating agencies then a standard rating
in investment grade range is assumed. For the estimation of the elasticity parameter β, we follow the
approach presented by Craig, Kötter, and Krüger (2014) and obtain β̂caprat = −2.005332. Details
and results of the logistic regression can be found in Appendix A2.

The network resulting from these inputs can be described as follows. It is a directed graph (or ’di-
graph’) with 1, 710 nodes (German banks) and 20, 425 arcs (single credits from one bank to another).
The average in-degree, ie the average number of credits a representative bank of the system receives,
is 11.94, ranging from 0 to 1, 357 credits, and the average out-degree, the average number of credits
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Figure 1: Illustration of the network

Bank 1Bank 1

Bank 2Bank 2

Bank 3Bank 3

Bank 4Bank 4

Bank 5Bank 5

Bank 6Bank 6

Note: For illustrative purposes the graph for the bank network does not include all institutions used in the analysis. Instead,

we focus on banks whose default generates banking system losses amounting to at least 1 billion C in the analysis of

section 4.2, ie the graph contains 46 nodes and 1, 188 edges. The label, the size and the color of the nodes depends on

the banking system losses stemming from the application in Table 1. The thickness of the edges represents the size of

the respective credit and the edges’ color is determined by the node color of the bank having this credits as liability in its

books.
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a representative bank gives, is 11.94, ranging from 0 to 997 credits. In order to give a short insight
into the density of our network, two kinds of measures are consulted. Firstly, the average path length
in the network3 is 2.283 with a diameter, ie the largest distance in terms of paths between any two
nodes in the network, of 5. Secondly, the average clustering coefficient4 is 0.714. The latter is a
measure of cliquishness in a network ranging from 0 (very loose network) to 1 (very dense network).
Figure 1 shows an extract of the network we use.

4.2 Systemic importance of single institutions

The first possible application of the algorithm we present is the simulation of single institutions’
defaults. This analysis provides the possibility to rank institutions with respect to the banking system
loss their default induces in the banking system. The resulting ranking is of a cardinal nature, ie the
differences in the banking system loss between single institutions are economically interpretable. To
take account of the confidentiality of the data bank’s identity is masked and the BSLoss calculated
for each bank is normalized in the application.

For the calculation of the ranking we simulate the default of each of the 1, 710 institutions in
the network, ie we change the PDi of the respective institution at the beginning of the algorithm to
PD1 = 1. Thus, the algorithm is repeated 1, 710 times to derive the banking system loss the default
of every single institution causes. The propagation of the exogenous shock stops when the changes in
the PDs of all counterparties are smaller than a threshold value ε = 0.000001.

For this application we apply the following default criteria: A bank is considered as defaulted
if its Tier 1 capital ratio falls below 6%5 or its leverage ratio falls below 1.5%. Table 1 displays an
excerpt of the obtained rankings for the top 20 banks in the network whose default causes the greatest
banking system loss.6 One interesting fact that can be concluded from Table 1 is that the first five
banks can be considered as almost equally important for the German banking system with regard to
interconnectedness. A default of one of these banks would result in a BSLoss of up to 15.9% of
the sum of BSLoss of all banks in the network. In fact, a default of one of these five banks would
result in a mutual default of the remaining four banks due to their high level of interconnectedness.
Furthermore, it can be seen that for many of the displayed banks a significant proportion of the total
banking system loss stems from indirect propagation in the subsequent rounds following the direct

3In the network literature a path is defined as a sequence of links connecting two more or less distant nodes such that no
node is hit twice. This fact distinguishes a path from a walk, since in the course of a walk every node in the network can be
hit several times.

4The intuition behind the clustering coefficient can be illustrated by a simple example: imagine three nodes of a network
a,b and c with arcs ab and ac. The clustering coefficient gives the probability that there also exists an arc bc.

5The default criterion follows Memmel and Sachs (2011). It reflects the minimum capital requirements of the Basel III
framework to be from 2015 onwards.

6Our results are driven among other factors by the loss given default (LGD) of banks. For our calculations we chose
the value widely used in the respective literature as LGD= 0.45. It should be noticed that this value in combination with
the sensitive default criteria chosen might overestimate the resulting banking system loss since a lower share of a failing
institutions’ bankrupt estate might be ultimately lost in practice.
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Table 1: Ranking resulting from the algorithm

Total effect Direct effect Indirect effect
- Round 2 - - Following rounds -

Rank BSLossT

i

BSLossT

1

# rounds defaultsT

i

defaultsT

1

BSLossdir

i

BSLossT

i

% defaultsTi
BSLossind

i

BSLossT

i

% defaultsTi
BSLossT

i

Creditsrec

i

1 100.0% 16 100.0% 5.2% 2.8% 94.8% 97.2% 8.64
2 100.0% 14 100.0% 5.4% 4.1% 94.6% 95.9% 8.34
3 100.0% 14 100.0% 8.1% 3.9% 91.9% 96.1% 5.52
4 100.0% 14 100.0% 6.2% 3.8% 93.8% 96.2% 7.20
5 100.0% 10 100.0% 9.6% 4.6% 90.4% 95.4% 4.68
6 34.5% 11 69.5% 36.4% 79.1% 63.6% 20.9% 1.23
7 10.8% 10 2.0% 47.2% 46.4% 52.8% 53.6% 0.95
8 8.6% 11 1.5% 59.0% 71.4% 41.0% 28.6% 0.76
9 7.1% 9 11.9% 65.0% 97.6% 35.0% 2.4% 0.69
10 6.3% 10 0.8% 46.0% 50.0% 54.0% 50.0% 0.98
11 6.1% 9 0.4% 95.6% 33.3% 4.4% 66.7% 0.47
12 3.3% 9 0.5% 92.3% 71.4% 7.7% 28.6% 0.49
13 3.0% 10 1.4% 71.7% 50.0% 28.3% 50.0% 0.62
14 2.4% 8 0.2% 99.0% 66.7% 1.0% 33.3% 0.45
15 1.9% 8 0.3% 64.5% 75.0% 35.5% 25.0% 0.70
16 1.8% 8 0.4% 81.6% 66.7% 18.4% 33.3% 0.55
17 1.5% 9 1.5% 75.9% 77.3% 24.1% 22.7% 0.59
18 1.4% 6 0.2% 98.4% 66.7% 1.6% 33.3% 0.46
19 1.3% 8 0.3% 64.1% 75.0% 35.9% 25.0% 0.70
20 1.2% 8 0.5% 85.3% 71.4% 14.7% 28.6% 0.53

Note: Creditsreci is the total amount of interbank liabilities of bank i with respect to the German banking system. Columns 1
and 3 display the BSLoss and the number of defaults relative to the values for Bank 1. The third column gives the number of
rounds the algorithm realizes for every single default scenario. Columns 5 and 7 display the proportion of the total BSLoss
in the respective rounds following the shock and columns 6 and 8 give the percentage of defaulting banks in the respective
round as fraction of the total number of defaulting banks.

propagation effect in round 2. Therefore, we argue that the persistence of contagion can form a
crucial part in the analysis of the consequences certain institutions’ defaults may have on the entire
banking system.

We compare the ranking derived from BSLoss to rankings obtained from calculations for other
established measures for interconnectedness. To this end, Table 2 displays the Spearman’s rank cor-
relation coefficient ρ between BSLoss and the method to determine domestic systemically important
banks (D − SIBs7), the α-centrality measure from Bonacich and Lloyd (2001) and the in-degree.

The second column of Table 2 refers to the total score of the indicator-based method to determine
D-SIBs. This method comprises four different dimensions: size, interconnectedness, complexity and

7Based on proposal by Basel committee to determine domestic systemically important banks.
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Table 2: Rank correlation coefficients between BSLoss and other measures for interconnectedness

D-SIBs D-SIBs Bonacich In-Degree
(Total score) (Intercon.) centrality measure

ρ 0.39 0.66 0.96 0.70

substitutability. The third column refers to the sub-score for interconnectedness, which is mainly
based on the volume of interbank credits. In the fourth column the rank correlation with the Bonacich
centrality measure is displayed. This eigenvector-based measure takes into account the entire network
structure8. The results show that the rankings are (partly closely) correlated between BSLoss and
the other measures for interconnectedness.9 This is consistent to the fact that BSLoss has features
of recursive centrality measures, such as the Bonacich eigenvector-based centrality measure, and also
takes into account the amount of interbank credits, such as the method to determine the level of
interconnectedness for D-SIBs. However, in contrast to these two measures for interconnectedness
BSLoss takes additionally into account the credit quality of interbank exposures and the inherent
relationship between the PD of the debtor bank and the PD of the creditor bank.

In a further step we simulate a policy intervention in the form of the implementation of a SIFI-
buffer to the banking system. We introduce a surcharge on the initial capital-ratio of the first six
banks in our ranking. To each of the six institutions we assign a rise in the initial capital-ratio by k
percentage points in the following way:

Tier1Pi,0
RWAi,0

=
Tier1i,0
RWAi,0

+ 0.0k

To compare the outcomes of this policy intervention with the initial scenario, we display the average
BSLoss due to a default of these six institutions in the system with values for the policy parameter k
ranging from 0 to 2.5 in Figure 2. Furthermore, on the secondary axis, we display the average number
of defaulting institutions due to a default of these six banks. Since in practice a SIFI-buffer will not
exceed 2.5 percentage points, we think that these values for k are adequate.

Figure 2 illustrates the usefulness of a SIFI-buffer in this framework. The implemented SIFI-
buffer needs to exceed a certain value (here: k ≥ 2) in order to prove useful in curbing losses in
the respective system. In case the SIFI-buffer is lower than that value, certain banks will default
despite its stronger capital base. This default causes nearly the same disturbances as it does without a
SIFI-buffer.

8In addition we have weighted the respective adjacency matrix with the corresponding interbank matrix.
9The ranking between BSLoss and the Bonacich centrality measure is highly correlated (ρ = 0.96). The rank correla-

tion is weaker for other reporting dates (eg ρ = 0.83 based on year-end 2012 data).
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Figure 2: Average banking system loss for different scales of policy intervention

Note: The vertical axes represent the average BSLoss (primary axis) and the average number of defaults (secondary axis)

the defaults of the six most ’important’ institutions cause in the system. These values are displayed relative to the BSLoss

and the defaults for ’Bank 1’ in Table 1. The policy parameter k on the horizontal axis is the percentage point change in the

capital-ratio the first 6 institutions from our ranking in Table 1 need to apply.

4.3 Collapse of a housing bubble

The second application for the algorithm we present is a scenario analysis on the consequences of a
decline of prices in the real estate market. In a first step we calculate the banking system loss caused by
such a decline in real estate prices. In a second step we assess the usefulness of a policy intervention
of different strength, namely an increase of the capital-ratio for all banks ordered by the regulator. For
different scales of this regulatory requirement we can observe how the banking system losses develop
and assess the usefulness of the respective intervention.

For the calculations in this application we follow the formulae presented in section 3.2 in com-
bination with the standard algorithm from section 3.1. The data used is essentially the same as in
section 4.2 with an additional variable for the absolute amount of credits every bank holds in the real
estate sector. This variable is taken from the German banks’ reporting system to the Deutsche Bun-
desbank. Furthermore, the probability of default for mortgage loans is set to PDMg = 0.01510 and is
not affected by the shock.

As in the application before, an exogenous shock hits the system, this time causing an increase
10This value represents an average which has been determined on the basis of supervisory reports for a representative

selection of German banks.
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of the PDs of some institutions in the system. The shock consists of an increase in the loss given
default (∆ LGD) of credits to the real estate sector. This disturbance influences the values of Tier1-
capital and the RWAs and, consequently, changes the capital-ratio of the respective bank. Every
institution engaged in the real estate sector will therefore experience a rise in its PD by a certain
amount depending on the change in the capital-ratio. Hence, the initial increase of the PD for a
certain bank depends on the institutions’ extent of engagement in the real estate sector. After the
implementation of this shock into the initial round t = 1 of the algorithm according to section 3.2, the
propagation of the shock in the network takes place exactly in the same manner as before using the
algorithm from section 3.1 from round t = 2 on.

The results in this application are dependent on the parameter k. This parameter determines the
scale of policy intervention. Before any shock hits the system, all institutions are forced to increase
their capital-ratio by k percentage points relative to its engagement in the real estate sector. Hence,
the required change in the capital-ratio is

Tier1Pi,0
RWAi,0

=
Tier1i,0
RWAi,0

+ 0.0k · Mgi
TAi,0

(4)

with Tier1Pi,0 as the required level of Tier1-Capital the banks need to reach for equation (4) to hold.

Figure 3 displays the results for the algorithm applied to different scenarios. We perform the
algorithm for four scenarios with k ranging from 0 (ie no policy intervention) to 3. For every single
of these scenarios we calculate the banking system loss (on the vertical axis) for different values
of declines in house prices in form of a change in loss given default ranging from ∆LGD= 0 to
∆LGD= 0.18 (on the horizontal axis). This banking system loss is calculated as the difference
between total assets in round T and round 1 according to equation (3). These values contain the
contagion effects occuring in the banking system only, excluding the direct adjustments taking place
as a response to the initial price shock.

Figure 3 illustrates the reduction in the BSLoss a certain policy intervention entails compared
to the baseline case of no policy intervention for a given ∆LGD. Consider for example the case of
∆LGD= 0.15, ie a rise in the loss given default of 15%: a policy intervention of k = 1 will mitigate
the consequences of the exogenous shock in the system compared to the situation without regulatory
intervention. Additionally, it can be deduced from figure 3 that a stronger intervention, eg k = 2,
would further reduce the scale of consequences for the system. The banking system loss prevailing
from the given reduction in house prices might be reduced by ∼ 1 bn. C with an intervention of
k = 1 and by an additional ∼ 0.5 bn. C with an intervention of k = 2.

In order to assess the BSLoss stemming from interconnectedness of banks only, disregarding the
initial effect on the institutions engaged in the real estate sector, the algorithm provides the possibility
to separate these two effects. Figure 5 illustrates these differences for the case of no policy intervention
(ie k = 0) and the scales of ∆LGD introduced before. It can be seen that the initial effects on banks
(the difference between the black and the grey line) have about the same size as the banking system
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Figure 3: Illustration of different scales of policy intervention for several shock scenarios

losses stemming from interconnectedness in the network (the absolute amount of the grey line).11

This indicates that, apart from the direct effects, banks are equally hit by the indirect contagion effects
in the financial system following the decline in house prices. Furthermore, Figure 5 shows the lines
are not increasing steadily, but follow a pattern with alternating sharp and moderate increases. This
represents the strong relative impact of defaults for the banking system.

5 Conclusion

In this paper we have developed an analytical framework to quantify the cost of contagion in the
banking system. The proposed measure BSLoss describes the increase n expected credit losses due
to contagion risk. It combines several merits from other established measures of interconnectedness
(eg risk sensitive, expressible in monetary units). This framework may prove useful in the context

11The total effect of the house price decline (black line) is calculated as BSLosstotal =
∑

j(TAj0 − TAjT ) and the
contagion effect (grey line) as BSLosscontagion =

∑
j(TAj1 − TAjT ).
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Figure 4: Illustration of the scale of the propagation effect for different scenarios

of macroprudential surveillance and policy evaluation. In particular, it may be used to study the
effectiveness of different macroprudential instruments.

We apply the proposed analytical framework to two very important fields of macroprudential su-
pervision: firstly, we come up with a ranking according to the relative importance of banks in their
banking system. Secondly, we quantify the benefits of two macroprudential policy instruments: capi-
tal surcharges for systemically important financial institutions (a SIFI-Buffer) and a capital surcharges
for mortgages to curb contagion.

However the limitations of the model must be considered when interpreting the results. As with
all partial analysis, we have to keep in mind that our analysis is a ceteris paribus analysis. While a
shock might propagate faster than interbank credits can change, leaving our analysis valid, financial
institutions might rearrange their portfolios and change their lending and borrowing habits in response
to a policy change, exposing our policy evaluation to the Lucas critique.

The framework can also be extended to assess the interconnectedness in other financial networks,
such as the shadow banking system. A more sophisticated risk analysis might identify relevant shock
scenarios and feed those into the proposed algorithm. Other types of contagion channels (eg liquidity
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channel) and their interaction among each other would be also of interest for the analysis. Most likely,
one would also like to take into account the cost of capital surcharges in terms of reduced lending, as
was done by Kashyap and Stein (2004).

Finally, the model may react very sensitively to certain parameter conditions. For example, small
changes in LGD may result in big jumps in BSLoss and the number of defaulted banks ("cliff-
effect"). However, it should be noted the sensitive dependency on initial conditions can hardly be
avoided because it reflects an inherent problem when making predictions of the outcome of complex,
non-linear dynamic network systems.
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6 Appendix

A1: Calculation of Risk-weights, Tier 1 Capital and Total Assets
Risk-weights are calculated using the IRB formula

RW (PD,LGD,M) = 1.06 · 12.5 · LGD·

(
N

(
N−1(PD) +

√
ρ(PD)N−1(q99.9%)√

1− ρ(PD)

)
− PD

)
,

· 1 + b(PD) · (M − 2.5)

1− 1.5 · b(PD)

where b(PD) = 0.11852− 0.05478 · ln(PD) and ρ is the asset correlation, which is defined by

ρ(PD) =
1− e−50PD

1− e−50
· 0.12 + (1− 1− e−50PD

1− e−50
) · 0.24.

Total assets and Tier 1 capital are calculated net of loan loss allowance. For practical reasons, we
assume the loan loss allowance can be described approximately by the expected loss based on regula-
tory risk parameters, ie the loan loss allowance charged to bank i on the interbank credit W granted
to bank j in round t equals to:

LLAi,t = Wij · Pt(i|A) · LGD

As a result, the total assets in t+ 1 which has changed due to a change in probability of default of the
debtor banks j amounts to:

TAi,t+1 = TAi,t −
∑
j

(LLAi,t − LLAi,t−1)

= TAi,t −
∑
j

Wij · LGD · (Pt−1(j|A)− Pt−2(j|A))

In principle, the same reasoning applies to Tier 1 capital, which we approximately describe by the
difference between total assets and debt liabilities D. Therefore, Tier 1 capital of bank i in round t
equals to:

Tier1t = TAt −D

Using the procedure for TA above and assumingD is measured at the (constant) notional value of the
debt liabilities, Tier 1 capital in t+ 1 amounts to:

Tier1i,t+1 = Tier1i,t −
∑
j

Wij · LGD · (Pt−1(j|A)− Pt−2(j|A))
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A2: Logistic regression

In order to estimate by how many percent points the probability of default changes if the capital ratio
of a bank changes by one percent, we run the following logistic regression:

Pr(default) = p(ln(CapRat), X) = F (α+ βln(CapRat) + γX) (5)

where F (z) = ez/(1 + ez) is the cumulative logistic distribution and π is the probability of the
dependent variable equalling a "success", in our case this is a default. Taking the natural logarithm on
both sides and rearranging terms, we get the inverse of the logistic function, the logit:

ln
p(ln(CapRat), X)

1− p(ln(CapRat), X)
= α+ βln(CapRat) + γX. (6)

However, we are not interested in effect on the odds ratio, p(ln(CapRat),X)
1−p(ln(CapRat),X) , but rather the probability

of default, p(ln(CapRat), X). Therefore, we use the natural exponential function on both sides of
the equation and rearrange:

p =
eα+βln(CapRat)+γX

1 + eα+βln(CapRat)+γX
. (7)

In order to know by how many percent points the probability of default changes if the capital ratio
changes by one percent, we have to take the derivative with respect to the capital ratio:

δp

δln(CapRat)
=

(1 + eα+βln(CapRat)+γX)βeα+βln(CapRat)+γX − βe2(α+βln(CapRat)+γX)

(1 + eα+βln(CapRat)+γX)2

= β
eα+βln(CapRat)+γX

(1 + eα+βln(CapRat)+γX)2
.

Now, from equation (7) we deduce that eα+βln(CapRat)+γX = p
1−p and hence,

δp

δln(CapRat)
= β

p
1−p

(1 + p
1−p)2

= β(p− p2) (8)

which describes by how many percent points the probability of default changes if the capital ratio
changes by one percent.
The regression results for the capital-ratio as independent variable are included in Table 3.
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Table 3: Regression results

Variables Capital-Ratio

Constant -29.73419
(0.965)

log(Tier1-Capital over RWA) -2.005332 ***
(0.000)

Depreciation and Adjustments over Equity -0.0014031
(0.729)

Administration Expenses over Total Assets 0.0165785 **
(0.050)

Return on Equity -0.0765523 ***
(0.000)

Cash and overnight Interbank Loans over Total Assets 0.0314922 ***
(0.002)

Log Total Assets 0.3088996 ***
(0.000)

(pseudo) R2 0.1355

Note: The regression is based on a panel-dataset containing 8288 observations and 6 periods (from
2001 to 2006). We control for regional fixed effects.

A3: Update of the PDs in the contagion algorithm

For infinitesimally small changes of ln(CapRat) we can write

dp = β(p− p2) · dln(CapRat)

or, equivalently,
dp

p− p2
= β · dln(CapRat).

Taking into account that
∫ dp
p(p−1) = ln

(
p
p−1

)
+ c, with a constant c, and applying simple rules for

the logarithm, we obtain

ln

(
pt

pt − 1

)
= β(ln(CapRatt)− ln(CapRatt−1)) + ln

(
pt−1

pt−1 − 1

)
,

which is equivalent to equation (2) in the main text. Note that we assume that the PD is a function of
CapRat only and that all other explanatory variables in the regression do not have any influence on
the PD.
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A4: Academic example
We assume a complete interbank credit market where each bank is connected to all other banks.
Three uniform banks exist, each with PDi = 0.02, TAi = 20, RWAi = 10, CAPi = 1 and
Wi,j = 2 for i,j ∈ {1,2,3}. Table 4 displays the quantity BSLoss for different levels of shocks and
over various rounds. From the simulation results it can be seen that BSLoss is monotonically
increasing in ϕ. BSLoss has a discontinuity on the interval between ϕ = 820bp and ϕ = 830bp.
Above a certain threshold the default of banks leads to jumps in the PDs and BSLoss. It can be seen
that any additional increment exceeding that shock level does not lead to a further increase of
BSLoss. Any further increase of the initial shock would only result in an earlier default of these
banks, leaving the overall BSLoss unchanged. The corresponding sequences of the PDs are shown
in Figure 5.

Table 4: Development of BSLoss for different shocks over the rounds of the algorithm

Round ϕ = 400bp ϕ = 600bp ϕ = 820bp ϕ = 830bp ϕ = 1000bp ϕ = 1200bp

1 0.09674 0.14063 0.18766 0.18977 0.22544 0.26685
2 0.12194 0.17985 0.24312 0.24598 0.29455 0.35133
3 0.13539 0.20034 0.27159 0.27482 0.32963 0.39379
4 0.14517 0.21638 0.29531 0.29891 0.36011 3.85929
5 0.15114 0.22636 0.31034 0.31419 3.81087 5.29200
6 0.15513 0.23339 0.32146 0.32551 5.29200
7 0.15766 0.23801 0.32902 0.33322

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
13 0.16199 0.24679 0.34500 0.34959
14 0.16211 0.24708 0.34566 3.77945
15 0.16219 0.24729 0.34613 5.29200
16 0.16224 0.24742 0.34646

.

.

.
.
.
.

.

.

.
.
.
.

22 0.16232 0.24768 0.34715
23 0.24769 0.34718
24 0.24769 0.34720
25 0.24770 0.34721

.

.

.
.
.
.

29 0.34724
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Figure 5: Development of the banks’ PDs for different shock sizes
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Figure 6: Development of the banks’ PDs for different values of the initial PD-vectors 
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Table 5 displays the quantity BSLoss for different initial PD-vectors and over various rounds given
a shock (ϕ = 500bp) has hit one bank. From the simulation results it can be seen that BSLoss is not
a monotonically increasing function on the closed interval from PD0 = 0.02 to PD0 = 0.06. For
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low levels, an increase in initial PDs results in higher BSLoss due to the fact of the logarithmic
relationship between CapRat and PD. At PD0 = 0.031 banks’ default results in a jump of the PDs
and BSLoss. Notably, any additional increment exceeding that PD0 level does not lead to a further
increase in BSLoss, but actually a decrease. Given that the PDs are bounded by 1, any additional
increase in initial PDs (ie PD0 > 0.031) results in a corresponding reduction in BSLoss ceteris
paribus. The corresponding development of stressed PDs depending on the level of initial PDs is
illustrated in Figure 6.

Table 5: Development of BSLoss for different values of the initial PD-vectors

Rounds PD0 =

0.02

0.02

0.02

 PD0 =

0.03

0.03

0.03

 PD0 =

0.031

0.031

0.031

 PD0 =

0.04

0.04

0.04

 PD0 =

0.06

0.06

0.06


1 0.13537 0.14140 0.14195 0.14639 0.15395
2 0.18270 0.19524 0.19639 0.20594 0.22249
3 0.21586 0.23611 0.23800 0.25390 0.28216
4 0.24401 0.27239 0.27509 0.29801 0.33968
...

...
...

...
...

...
11 0.33166 0.41209 0.42059 0.49952 0.67325
12 0.33658 0.42290 0.43217 0.51937 3.62869
13 0.34059 0.43239 0.44239 0.53786 4.96800
14 0.34385 0.44073 0.45144 0.55519
15 0.34651 0.44807 0.45947 0.57151
16 0.34869 0.45456 0.46661 3.66112
17 0.35046 0.46031 0.47298 5.07600
18 0.35191 0.46540 0.47867
...

...
...

...
35 0.35822 0.50139 0.52123
36 0.35826 0.50207 3.67364
37 0.35829 0.50269 5.12460
38 0.35832 0.50324
...

...
...

47 0.35842 0.50627
48 0.50646
...

...
83 0.50814
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