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Abstract

This paper quantifies the credit risk loss distribution of the Span-
ish financial system by introducing a general Monte Carlo importance
sampling (IS) approach. We start obtaining all the required informa-
tion for the standard credit risk model. Then we quantify the loss
distribution under the standard IS method and allocate the total risk
over the different institutions in the Spanish financial system. We ex-
tend the current IS framework to deal with more general assumptions
like random recoveries and market valuation. We also study the vari-
ability of the risk measures over the business cycle and the possible
variability due to the model parameters uncertainty. Our results show
that this approach can be very useful for banking supervisors from a
macroprudential point of view and that the risk allocation can vary
considerably depending on the valuation model under analysis.
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1 Introduction

This paper quantifies the credit risk loss distribution of the Spanish financial
system under a general Monte Carlo importance sampling (IS) model. One
of the main activities in financial institutions consists on financing investors
and paying depositors. Under the Basel regulation the financial institutions
are required to have a minimum level of own resources so that they will not
go bankruptcy in the case that investors do not pay back their loans.

Micro-prudential financial regulation focuses on a one by one supervision
of the financial institutions in order to ensure a maximum default probability
of each institution, however a macro-prudential financial regulation focuses
on the whole loss distribution of the financial system. In the past regu-
lators did just a micro-prudential supervision (see Basel (2006)) however
they have recently switched to a macro-prudential supervision (see Basel
(2011)) that tries to capture the interconnectedness between the financial
institutions, their size and the magnitude of the possible negative effects in
the economy. Over the current economic crisis many financial institutions
had to be rescued by the governments due to their size and potential neg-
ative effects in the economy, among others we have Fannie Mae, Freddie
Mac, AIG, Northern Rock, RBS, Lloyds, Nordea, Dexia, ING, Fortis, IKB,
Commerzbank, Hypo Real Estate or Bankia, CAM, CatalunyaCaixa, No-
vacaixagalicia (NCG), and Unnim in Spain and some have merged or been
absorbed by others financial institutions. Therefore knowing the loss dis-
tribution of a whole financial system and being able to correctly allocate
the risk of each institution is crucial for a good banking supervision and the
financial system stability.

Over the previous years the measurement and allocation of the systemic
risk of the financial system has been a very relevant topic. Many papers have
analyzed this issue with a certain focus on the US financial system. Giesecke
and Kim (2011) measured the systemic risk of this system by proposing
a dynamic hazard model aiming to predict the number of future defaults
conditional on a set of explanatory variables.

Other papers have focused on the risk allocation rather than on the total
risk measurement, see Huang et al. (2009), Acharya et al. (2010), Adrian
and Brunnermeier (2010), and Brownlees and Engle (2012), among others.
All these papers use a risk allocation criterion based on market information
and therefore produce point-in-time and risk-neutral estimates. Huang et
al. (2009) use an allocation rule based on the CDS implied default rates and
the equity implied asset correlations. Acharya et al. (2010) and Brownlees
and Engle (2012) provide a risk allocation method based on the expected
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capitalization of the financial institutions on a stressed scenario. Finally,
Adrian and Brunnermeier (2010) introduce the CoV aRi concept as the VaR
of the portfolio conditional to the institution i being in distress and use this
measure as the main driver for the risk allocation.

This paper estimates the loss distribution of the Spanish financial system
under the model introduced in Vasicek (1987). This model is widely used in
practice and is the starting point for the Basel Internal Rating Based capital
charges (see Basel (2006)). As far as we know, Campos et al. (2007) is the
only previous study that tried to measure the risk of the Spanish financial
system. However, these authors a) did not take into account the diversifica-
tion effect of the institutions that are not only based in Spain, b) used a base
recovery value of 60% which, according to USA default data, is too low, and
c) did not allocate the risk over the different financial institutions. Bennett
(2002), Kuritzkes et al. (2002), and Cariboni et al. (2013) used a similar
approach to that in Campos et al. (2007) to define an optimum deposits
insurance fund in USA and Italy, respectively.

As we have said, Campos et al. (2007) considered a unique macroeco-
nomic factor that links all the institutions in the economy. Our paper goes
one step forward as we define as many factors as countries. We propose to
use the public information of consolidated net interest income generated by
the banking groups in the different countries (see BBVA (2009) and San-
tander (2009)) as a way to capture the risk exposure of the institutions to
the different countries.

We use the Monte Carlo Importance Sampling (IS) technique introduced
in Glasserman (2005) and Glasserman and Li (2005) to measure and allo-
cate the total risk of a certain portfolio. One of the main advantages of
this technique is that it can generate very accurate loss distributions and
risk allocation at a low computational cost compared with that of the stan-
dard Monte Carlo method. In addition, compared with other approximate
methods to obtain loss distributions like those in Pykhtin (2004) and Huang
et al. (2007), its accuracy can be improved by increasing the number of
simulations.

To address some criticism raised from the constant recoveries assumption
we have used data of the deposits guarantee fund in United States (FDIC,
Federal Deposit Insurance Corporation) to extend the IS model to deal with
random recoveries. After testing several random recoveries models, our re-
sults show that the random recoveries impact on the risk allocation over the
different institutions but not on the portfolio 99.9% probability loss. We
have also extended the IS framework in Glasserman and Li (2005) to obtain
the market valuation of the portfolio by using a model similar to that in
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Grundke (2009). The impact of this valuation on the loss distribution can
double that of the random recovery model.

This paper provides three major contributions. First, we measure and
allocate the risk of the Spanish financial system under the IS method. Sec-
ond, we extend the IS method to deal with more realistic assumptions such
as random recoveries and market valuation. Third, we study the variability
of the loss distribution over the business cycle and the variability of the loss
distribution due to the uncertainty in the model inputs. We also highlight
that a simple default mode model can seriously underestimate the possible
losses and the risk allocation compared with a market mode model. We
suggest not to focus only in one model but to test the impact of the dif-
ferent models to asses the solvency of a financial system and the impact of
each financial institution. We believe that our approach goes one step for-
ward in the current risk measurement methods applied by financial system
supervisors and it can be a basic tool to identify Systemically Important Fi-
nancial Institutions (SIFI) and to quantify the required capital surcharge for
these institutions. As stated in Basel (2011), the Basel banking supervision
Committee considers a number of global systemic banks and sets additional
capital requirements using a score function that quantifies the effects of a
default in one of these banks on the whole system. Among other variables,
this score function considers the size, the cross-jurisdictional claims and lia-
bilities, and positions (loans, liabilities) with other institutions. As we will
see later, this interconnectedness among entities is captured in the Vasicek
(1987) model through the macroeconomic common variables.

This paper is organized as follows. Section 2 reviews the main ideas re-
garding credit risk and the Vasicek (1987) model. Section 3 introduces the
IS model proposed in Glasserman and Li (2005) and explains the optimal
changes in the sampling distributions. Section 4 describes the main features
of the Spanish financial system portfolio. Section 5 presents the IS results,
loss distribution, and risk allocation for this financial system. Section 6
develops the random recoveries and market mode valuation extensions. Sec-
tion 7 analyzes the variability of the the loss distribution over the business
cycle and its variability due to the uncertainty in the model parameters
estimates. Section 8 summarizes our main results and concludes.

2 The Vasicek (1987) Model

Vasicek (1987) introduced the most extended credit risk models assuming
that the default behavior of a given client j (or counterparty) is driven by
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a set of macroeconomic factors Z = {z1, z2, · · · , zk} and an idiosyncratic
(client-specific) term εj . The factors {zi}ki=1 and εj are independent and
distributed as standard normal random variables.1 Under these assump-
tions, default is modeled through the so called asset value of the client j,
defined as

Vj =

k∑
f=1

αf,jzf + εj

√√√√1−
k∑

f=1

α2
f,j (1)

This client defaults in her obligations if Vj falls below a given default
threshold level k. As Vj ∼ N(0, 1), we have that k = Φ−1(PDj,C), where
Φ(·) denotes the normal distribution function and PDj,C denotes the his-
torical average default rate of the client j over long enough periods.2

Given the specification (1) and conditional to the macroeconomic factors
Z, the default probability of the client j is

Prob(Dj = 1|Z) = Prob(Vj ≤ k|Z) = Φ

Φ−1(PDj,C)−
∑k

f=1 αf,jzf√
1−

∑k
f=1 α

2
f,j


Bank portfolios are composed of this kind of contracts. The total loss

of a portfolio including M contracts or clients with individual losses xj is

given as L =
∑M

j=1 xj . Under infinite granularity, the idiosyncratic risk
of the different clients disappears and there is no uncertainty on the loss
conditional to the macroeconomic scenario.

Under granular homogeneous single factor portfolios, the unconditional
default rate distribution function is given as

Prob(DRz ≤ L) = Prob

(
Φ

(
Φ−1(PDC)− αz√

1− α2

)
≤ L

)
= Φ

(
Φ−1(L)

√
1− α2 − Φ−1(PDC)

α

)

Since the Basel II accord, the banking regulation uses the Vasicek (1987)
asymptotic single factor model and forces the financial institutions to have
an amount of own resources (equity and other assets with similar behavior
to the equity) equal to the worst loss with a 99.9% probability.

1Dependent factors can always be orthogonalized.
2It might be more useful to think on the historical average default rates of clients

similar to j rather than on the historical average default rates of the client j.
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The estimation of the portfolio loss distribution requires estimating PDC

for the different portfolios. This can be done by using the historical default
rates of the portfolios but another components are also needed:

1. EAD : Exposure at default, the amount of money owed by the investor
when he defaults.

2. LGD : Loss given default, the final loss after all the recovery processes.3

3. α: Sensitivity of the asset value to the macroeconomic factors. The
Basel accord provides standard α values for the different portfolios of
a bank.

Then, the portfolio loss can be expressed as

L =
M∑
j=1

xj =
M∑
j=1

EADjLGDj1(Vj ≤ Φ−1(PDj,C))

In the general case of non-granular, non-homogeneous and multi-factor
portfolios, the loss distribution of a loan portfolio can be obtained by Monte
Carlo methods or by approximated ones.

It should be noted that our objective is to know just some statistical
measures of the accumulated loss distribution F (L), being the most impor-
tant the following ones:

1. Value at Risk: V aR(q) = F−1(q).4

2. Expected Shortfall or Tail VaR, that is, the expected loss given that
a minimum loss level has been reached: ES(q) = E(L|L ≥ V aR(q)).

3. Risk contributions of the client j. We can consider two alternatives:

(a) Value at Risk contribution, CV aRj(q) = E(xj |L = V aR(q)).

(b) Expected Shortfall contribution, CESj(q) = E(xj |L ≥ V aR(q)).

3For a certain client j, both EADj and LGDj are random variables although they are
commonly assumed to be constant. Along the paper, we will indicate whether the LGD
is in percentage terms of the EAD or in euros.

4The Basel regulation requires a bank to have an amount of own resources equal to the
V aR(99.9%).
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3 Importance sampling for credit risk

The importance sampling (IS) is a Monte Carlo simulation method that
helps to estimate expectations of random variables through an smart change
of the sampling distribution. As explained previously, the most general mea-
sure in credit risk is Prob(L ≥ l), directly related to the VaR at a given con-
fidence level, or the maximum loss with a given probability. Then, to apply
the IS method, we start transforming this probability into an expectation
as follows

Prob(L ≥ l) = E(1(L ≥ l)) =

∫ ∞
−∞

1(L ≥ l)f(L)dL =

∫ ∞
−∞

1(L ≥ l)f(L)

g(L)
g(L)dL

One estimator of Prob(L ≥ l) is then given as

P̂ rob(L ≥ l) =
1

N

N∑
i=1

1(Li ≥ l)
f(Li)

g(Li)

where Li is sampled from g(L). As the simulated random variables are
independent, the variance of this estimator is5

V ar(P̂ rob(L ≥ l)) =
1

N2

N∑
i=1

V ar

(
1(Li ≥ l)

f(Li)

g(Li)

)
=

1

N
V ar

(
1(Li ≥ l)

f(Li)

g(Li)

)

≈ 1

N

 1

N

N∑
i=1

1(Li ≥ l)
f2(Li)

g2(Li)
−

(
1

N

N∑
i=1

1(Li ≥ l)
f(Li)

g(Li)

)2


where we have used sample statistics. Using this variance estimate and
the central limit theorem we can get the confidence intervals of the proba-
bility estimates.

The expected shortfall (ES) is defined as

ES = E(L|L ≥ l) =

∫ ∞
−∞

Lf(L|L ≥ l)dL =

∫∞
L Lf(L)dL∫∞
L f(L)dL

and can be estimated using the IS method as

ÊS =

∑N
i=1 Li1(Li ≥ l)

f(Li)

g(Li)∑N
i=1 1(Li ≥ l)

f(Li)

g(Li)

5It can be noted that the variance of this estimator vanishes for the sampling distribu-
tion g(Li) ∝ 1(Li ≥ l)f(Li).
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The estimators for the VaR and ES risk contributions of the client j are
respectively

ĈV aRj =

∑N
i=1 xj,i1(Li = l)

f(Li)

g(Li)∑N
i=1 1(Li = l)

f(Li)

g(Li)

, ĈESj =

∑N
i=1 xj,i1(Li ≥ l)

f(Li)

g(Li)∑N
i=1 1(Li ≥ l)

f(Li)

g(Li)

As ĈV aRj can not be implemented computationally, the following mod-
ification is required:

ĈV aRj =

∑N
i=1 xj,i1(l(1−R) ≤ Li ≤ l(1 +R))

f(Li)

g(Li)∑N
i=1 1(l(1−R) ≤ Li ≤ l(1 +R))

f(Li)

g(Li)

where R is an interval defining parameter. From now on we will employ
R = 1%.

The confidence intervals of the expected shortfall and the risk contribu-
tions can be derived using Serfling (1980) to obtain that

V ar(ÊS) ≈ N

∑N
i=1 (Li − ÊS)21(Li ≥ l)

(
f(Li)
g(Li)

)2

(∑N
i=1 1(Li ≥ l)f(Li)

g(Li)

)2 (2)

This equation can be extended to provide estimators of the variance of
the empirical estimates of the ES and VaR risk contributions just replacing
(Li − ÊS) by (xj,i − ÊS) or (xj,i − V̂ aR) and 1(Li ≥ l) by 1(l(1 − R) ≤
Li ≤ l(1 +R)) in (2).

So far no functional form for the function g(L) has been suggested.
Glasserman and Li (2005) suggested to obtain g(L) in two steps, chang-
ing a) the default probabilities conditional on the macroeconomic factors
and b) the macroeconomics factors distribution, respectively.

3.1 Optimal conditional distribution

Conditional to the macroeconomic factors realization, the default probability
of the client j is

PDj,Z = Φ

Φ−1(PDj,C)−
∑k

f=1 αf,jzf√
1−

∑k
f=1 α

2
f,j
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Glasserman and Li (2005) suggested to change the default probability
by a new one using an exponential twist

PDj,Z,θ =
PDj,Ze

LGDjEADjθ

1 + PDj,Z(eLGDjEADjθ − 1)

The change in the default probability of a client depends only on his
specific default parameters plus a parameter θ, common for all the clients.
Under this twist, the weight to be assigned to every loss simulation i of the
total portfolio is

W1,i =
f(Di,1, · · · , Di,M )

g(Di,1, · · · , Di,M )
=

M∏
j=1

(
PDj,Z

PDj,Z,θ

)Dj,i ( 1− PDi,Z

1− PDj,Z,θ

)1−Dj,i

where Dj,i is the default indicator of the client j in the simulation i. A
little algebra leads to

W1,i = e−Liθ+ψ(θ)

where

ψ(θ) =
M∑
j=1

ln
(

1 + Pj,Z

(
eLGDjEADjθ − 1

))
(3)

Note that, conditional to the macroeconomic state Z, the losses of ev-
ery client j are independent. Then, (3) implies that ψ(θ) is the cumulant
generating function of the random variable L(Z), with an important role in
the saddlepoint approximation method.

Now the problem is to estimate the optimal value of θ that minimizes the
variance of the estimator under the new distribution g(L, θ). Glasserman
and Li (2005) proved that

V arg(L,θ)

(
1

N

N∑
i=1

1(Li ≥ l)W1,i

)
≤ e−2θL+2ψ(θ)

Differentiating this upper bound and using the convexity of ψ(θ), the
optimum shift θl satisfies ψ′(θl) = l if l > ψ′(0) being null otherwise.
Straightforward calculations lead to ψ′(θ) =

∑M
j=1 LGDjEADjPDj,Z,θ =

Eg(L,θ)(L).
The intuition behind this result is that we aim to obtain high enough

losses close to the loss value l. Under the current macroeconomic factor
simulations, expected losses can be much lower than l and, then, the default
probabilities are changed so that the new expected losses equate the desired
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loss level, this is done by using θl ≥ 0. However, if the actual expected losses
are higher than the desired one (l), default probabilities are not changed at
all. In this case θl should be negative to get an expected loss of l.

If the VaR based loss contributions (CVaR) are calculated, the default
probabilities will always be shifted to the desired loss level l, so that many
simulations will lay inside the interval l(1±R). According to our experience,
the number of simulations in the VaR interval can be doubled from that
obtained when forcing θl ≥ 0.

Another interesting property of the Glasserman and Li (2005) approach
is that, as ψ(θ) equates the cumulant generating function, the optimization
problem ψ′(θ) = l to be solved under the IS method coincides with that
solved under a saddlepoint approach. The value θl is computed through a
non-linear iterative process that departs from an initial estimate obtained
by applying a third-order Taylor expansion to ψ(θ) around θ = 0.6

3.2 Optimal macroeconomic distribution

As with the default probability it is possible to change the distribution of
the macroeconomic factors to a new one that reduces the variance of the
estimates. The probability we are interested in is

Prob(L ≥ l) =

∫ ∞
−∞

Prob(L ≥ l|Z)f(Z)dZ ∝
∫ ∞
−∞

Prob(L ≥ l|Z)e−
Z′Z

2 dZ

The optimal sampling distribution g(Z) is proportional to Prob(L ≥
l|Z)e−(Z′Z)/2. Sampling from this distribution is complex but feasible through
the Markov chain Monte Carlo technique using the Metropolis-Hasting al-
gorithm. However, Glasserman and Li (2005) suggested sampling from a
normal distribution with the same mode as the optimum distribution, that

is, g(Z) ∼ N(µ, I), where µ = maxZ

{
Prob(L ≥ l|Z)e−(Z′Z)/2

}
. Accord-

ing to this, a new weight W2,i = e−µ
′Z+µ′µ/2 has to be applied and the IS

estimators will be given by

P̂ rob(L ≥ l) =
1

N

N∑
i=1

1(Li ≥ l)W1,iW2,i

Ê(L|L ≥ l) =
1
N

∑N
i=1 Li1(Li ≥ l)W1,iW2,i

P̂ rob(L ≥ l)
6We used this expansion to approximate the non-linear problem that has to be solved

and defined a rule to choose among the three possible solutions. This approach generated
initial estimates very close to the real value of θl.
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It still remains to estimate Prob(L ≥ l|Z). To this aim, we decided to
use a simple approach assuming that L|Z ∼ N(a, b2) where7

a = E(L|Z) =
M∑
j=1

PDj,ZLGDjEADj

b2 = V ar(L|Z) =

M∑
j=1

V ar(xj |z) =

M∑
j=1

PDj,Z(1− PDj,Z)LGD2
jEAD

2
j

4 Portfolio data

We evaluate alternative credit risk measures (loss distribution and risk con-
tributions) considering the 157 financial entities covered by the Spanish de-
posit guarantee fund (FGD) at December, 2010.8 This fund was analyzed in
Campos et al. (2007) by using a simple single factor model and plain Monte
Carlo simulations. These authors just tested a range of constant LGDs not
directly linked to historical recovery rates and did not estimate any risk
contribution measure. We will try to overcome these limitations and will
assume that the two biggest institutions (BBVA and Santander) are exposed
to other economies and, hence, to other macroeconomic factors.

4.1 Probability of default (PD)

We use the credit ratings available at December, 2010 for the Spanish finan-
cial institutions and the historical observed default rates reported by the
rating agencies9 to infer a probability of default. The ratings of the agencies
for these institutions can include some implicit Government support that
improves the risk profile. This support is relevant for the investors but from
the point of view of the Government, we should remove its effect from the
ratings. This task is not straightforward and we decided not to perform it
and keep our framework as simple as possible.

The probability of default is obtained adjusting an exponential function
to the default rates of the ratings up to B- while the rating AA- is provided a

7Other alternatives such as the constant approach or the tail bound approach can be
found in Glasserman and Li (2005).

8The FGD is built up to help the financial system stability and includes the three
previously existing funds (for banks, saving banks, and cooperative banks) that were
merged in October, 14th, 2011 under the Real Decreto 16/2011.

9See Fitch (2009), Moody’s (2009), and S&P (2009).
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probability of 0.03%, a commonly accepted number. Entities without exter-
nal rating are assigned one notch less than the average rating of the portfolio
with external rating.10 This implies that banks without external rating re-
ceive an A- and saving banks a BB+ rating, values that are consistent with
Campos et al. (2007). Once a rating is recovered, a long-term default rate
is assigned to each institution.

We obtain that the S&P and Moody’s ratings have very similar historical
default rates for the different rating letters while Fitch rating is very different
from the other two.11 Even though Fitch and S&P use the same letters to
measure credit risk, the underlying default risk is different, specially for
the very bad ratings. Luckily, no institution had this rating at the date of
analysis and, then, we can still use the calibrated probabilities of default.

4.2 Exposure at default (EAD)

Details on assets, liabilities, and deposits for the FGD institutions are avail-
able in the AEB, CECA, and AECR webpages.12 The FGD covers not only
depositors but also any loss due to a Governmental intervention of a finan-
cial institution. Hence, our analysis focuses on total assets losses and not
only on losses to depositors.

Balance information at December 2010 was used for the analysis. As
many mergers took place during 2010 (see Table 1), we have summed all the
information from the different institutions that belong to the same group.

[INSERT TABLE 1 AROUND HERE]

Figure 1 shows the assets and the deposits shares of the top 25 financial
institutions. These entities account for 92.1% of the assets and 92.8% of the
deposits in the financial system. The inverse of the Herfindahl index13 H
shows that there are only 10.8 and 13.7 effective counterparties (from both
assets and deposits points of view). This means that the Spanish financial

10This average is computed weighting by assets and distinguishing between banks and
saving banks.

11For the sake of brevity, these results are not reported here and are available upon
request.

12AEB is the Spanish Bank Association, CECA is the Spanish Saving Bank Association,
and AECR is the Spanish Credit Cooperatives Association. Other sources as Bankscope
were tested, however the set of available institutions was smaller.

13The Herfindahl index is a measure of portfolio concentration and its inverse can be
seen as the number of effective counterparties in the portfolio. See Allen et al. (2006),
Hartmann et al. (2006), and Carbó et al. (2009) for further details on the Herfindahl index
in the banking sector.
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system has few players and is very concentrated, a common feature in most
of the countries worldwide.

[INSERT FIGURE 1 AROUND HERE]

4.3 Loss given default (LGD)

Schuermann (2004) provided a review of the (academic and practitioner)
literature on the LGD. In more detail, this author focused on the meaning of
the LGD and its role in the internal ratings based (IRB) approach, described
the main factors that can drive LGDs, and discussed several approaches
that can be applied to model and estimate the LGD. See also Carey (1998),
Altman and Suggitt (2000), Amihud et al. (2000), Thorburn (2000), Unal et
al. (2003), and Altman et al. (2005), among others, for details on the LGD
main characteristics.

As Schuermann (2004) stated in its Section 7, “the factors (or drivers
or explanatory variables) included in any LGD model will likely come from
the set of factors we found to be important determinants for explaining the
variation in LGD. They include factors such as place in the capital structure,
presence and quality of collateral, industry and timing of the business cycle.”
In practice, industry models such as LossCalcTM use most of these factors,
see Gupton and Stein (2002) for more details on this model.

Bennett (2002) computed the losses due to financial institutions default
in the FDIC and showed that the average losses are bigger in the smallest
banks for the period 1986-1998. We update this analysis for the period
1986-2009 using FDIC public data and the banks assets are updated using
the USA CPI series aiming to have comparable asset sizes. We obtain an
average LGD for deposits of 20.73% but this value may be biased as there
are many observations in the initial and final years of the database. Hence,
we decide to use E(E(LGDj,t|t)) as an estimate of the real average LGD and
obtain 18.35%, that is, 88.56% of the initial average LGD. Then, we estimate
E (LGDj,t|Asset Bucket) and multiply it by the 88.56% adjustment factor.
Finally, these LGDs on deposits are transformed into LGDs on assets using
a multiplicative factor of 1.378.14 Table 2 provides the LGDs obtained in
this way.

[INSERT TABLE 2 AROUND HERE]

14This factor is based on the numbers obtained in Bennett and Unal (2011) that used
FDIC data for 1986-2007 and estimated an average depositors LGD of 24.4%, equivalent
to a 29.95% total LGD over assets before the time effect and a 33.61% after the discount
effect.
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4.4 Factor correlation (α)

We use the total factor sensitivities (α) stated in the Basel accord. These
values are computed according to the formula

√
0.12ω + 0.24 (1− ω) where

ω = 1−e−50PD

1−e−50 and, hence, range between
√

0.12 and
√

0.24.15 Recently, the
Basel III accord has increased the previous Basel II correlations by a factor
of
√

1.25. In this way, we would generate correlations in the range of those
used in Campos et al. (2007). In the following analysis we use the Basel III
correlations.

We assume geographic macroeconomic factors and that all the finan-
cial institutions are exposed only to the Spanish factor except for BBVA
and Santander that are exposed to additional geographies. This assumption
seems reasonable and its motivation can be seen in Figure 1 which shows
that, among the 25 biggest financial institutions, apart from these two en-
tities, only Barclays is not a fully Spain based bank and its share is very
small.

The exposure of BBVA and Santander to the macroeconomic factors
is computed using the reported net interest income by geography obtained
from the public 2010 annual reports. We think that this variable can be
a good proxy of the risk faced by a financial institution and, then, it can
indicate appropriately its exposure to the different countries in which the
institution operates. Hence, an income based allocation method can be
better than a method only based on exposures that would assign small
weights to the non-Spanish geographies.

Finally, we assume that the correlation between the macroeconomic fac-
tors for different countries is equal to that between the GDP of the coun-
tries.16

Table 3 shows the exposure of BBVA and Santander to the different
countries according to their net interest incomes. As these country factors
are correlated, those exposures have to be standardized so that the total
variance of the sum of each client’s macroeconomic factors equates one.

[INSERT TABLE 3 AROUND HERE]

4.5 Portfolio expected loss and Basel loss distribution

The total assets, expected loss, and BIS 99.9% probability loss for the Span-
ish financial institutions are 2,921,504 MM e, 453 MM e, and 13,733 MM

15Kuritzkes et al. (2002) and Campos et al. (2007) use
√

0.15 and
√

0.30, respectively.
In practice, most of the entities show sensitivities closer to

√
0.24.

16These correlations are available upon request.
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e, respectively.
Figure 2 includes these numbers for the top 25 Spanish financial institu-

tions. The left graph in this Figure shows the share of these variables for the
biggest (ordered by assets) 25 financial institutions. For example, Santander
represents 21% of the total assets, 7% of the total BIS 99.9% loss, and 4%
of the expected loss of the Spanish financial system, approximately.

[INSERT FIGURE 2 AROUND HERE]

Two conclusions can be extracted from this Figure:

1. Expected loss and Basel 99.9% probability loss generate a very similar
ordering.

2. The ordering according to the assets amount is very different from that
based on expected or Basel losses.

The right graph in Figure 2 shows the expected loss and Basel 99.9%
loss divided by the size of each institution. We find that the two biggest
institutions (BBVA and Santander) share very low risk parameters.

We will introduce now the results obtained with the IS method as a
way to deal with non-granular and multifactorial portfolios. The main ideas
behind this modification of the asymptotic single factor model are a) BBVA
and Santander have some diversification effects as they are exposed to more
than one macroeconomic factor that reduces their risk and b) having non-
granular portfolios increases the risk.

5 Importance sampling results

We start orthogonalizing the country factors by applying principal compo-
nents analysis. As the correlation between the different economies is very
high we end up having a very important common factor across all the finan-
cial institutions. When we obtain the optimum change in the factor mean
for a target loss of 10 times the expected loss we get a 1.62 value in the main
common factor and almost zero otherwise.

Figure 3 shows the loss distribution under IS and plain Monte Carlo sim-
ulations. According to the Basel model the loss level with 99.9% probability
is 13,733 MMe. While under multifactorial non-granular portfolios this loss
level is 32,102 MMe, 2.3 times more!17

17All the figures in the paper are based on the IS results rather than on the plain Monte
Carlo method.
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[INSERT FIGURE 3 AROUND HERE]

Figure 4 shows the results for the expected shortfall. The VaR contribu-
tions are usually less stable as few simulations fall inside the interval. That
is why it is quite common using the expected shortfall contributions at a
loss level whose tail expectation equals the VaR(99.9%) = 32,102 MM e.
In this case this loss level is 16,274 MM e.

[INSERT FIGURE 4 AROUND HERE]

Figure 5 shows the risk allocation rule according to the ES and VaR
contributions and the confidence intervals for the IS technique.18 These in-
tervals are quite thin after only 10,000 simulations, one of the main advan-
tages of the IS method over the plain Monte Carlo simulations. Moreover,
the IS method can generate many high loss simulations from a thin loss
interval and, then, more accurate estimates at a lower computation time.
The risk picture is completely different from that obtained using the simple
expected loss or the Basel loss model. The main reason for this is that the
non-granularity effect increases (decreases) the risk allocated to the biggest
(smallest) institutions.

[INSERT FIGURE 5 AROUND HERE]

The main ideas that can be extracted from this Figure are the following:

1. The LGDs (in euros) for BBVA and Santander are higher than the
VaR(99.9%). Then their VaR contributions are zero. This is a serious
limitation of the VaR based risk allocation for concentrated portfolios
with low default probabilities. In fact, this can induce a higher con-
centration profile as it promotes the growth of the biggest financial
institutions. Alternatively, we can allocate the risk to Santander and
BBVA considering the risk that would be allocated to two institutions
identical to BBVA and Santander but with one euro exposure each.

2. The LGD of Bankia is 28,948 MM e, close to the VaR(99.9%) value.
Then, this firm captures most of the risk under the VaR contribution
allocation criterion.

3. The risk allocations of Caixabank and Unnim have big confidence in-
tervals. This is due to the fact that the LGD of both entities together
is close to the VaR(99.9%) and there are few simulations in which
Caixabank and Unnim default.

18For the VaR contributions we have used a ±1% interval around the desired loss level.
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4. The confidence intervals of the 99.9% probability loss ratio are bigger
as the risk is adjusted by the institution size and Unnim has the biggest
confidence intervals for the risk allocation.

6 Importance sampling modifications and exten-
sions

This Section extends the classical IS framework to deal with random recov-
eries and market valuation. Other extensions were performed:19

1. We found that using the mode for the macroeconomic factor shifts may
introduce a low sampled region problem and we developed a method
based on the mean of the optimal distribution to overcome this prob-
lem.

2. For granular multifactorial portfolios, we found that the 99.9% prob-
ability losses of the Spanish financial are 13,478 MM e.

3. We also evaluated the suitability of the simulation loop decoupling,
based on simulating NMacro macroeconomic scenarios and NDefault

default scenarios for each (simulated) macroeconomic scenario. This
modification is very interesting in terms of speed and accuracy for port-
folios with few counterparties that are exposed to the same macroeco-
nomic factor, as it is our case. The following IS results are based on
this extension.

6.1 Random loss given default

So far the LGD has been considered as constant but it is a random variable
with the same span as the default rates. Then, it seems natural to assume
that the LGD follows a similar distribution to that of the default rate. Con-
sidering this, the simplest case assumes that the whole recovery risk comes
from macroeconomic factors, for example, a single factor called zLGD:

LGDj,Z = Φ

Φ−1(LGDj,C)− αjzLGD√
1− α2

j


Under this specification the only parameters to be estimated are αj and

the correlation between zLGD and the rest of the macroeconomic factors.

19For the sake of brevity, we just enumerate here these additional extensions and defer
the details to a final Appendix.
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This model also allows to have more macroeconomic factors but the idea is
that no idiosyncratic risk is considered.

The previous formula has been widely studied20 and some of their mo-
ments have a closed-form expression, for example

E(LGDj,Z) = LGDj,C

E(LGD2
j,Z) = Φ2

(
Φ−1 (LGDj,C) ,Φ−1 (LGDj,C) , α2

j

)
where Φ2(x, y, ρ) stands for the probability distribution function (eval-

uated at the point (x, y)) of a bivariate standard normal random variable
with correlation parameter ρ.

We have shown previously that the LGD depends on the institution size
and that most of the defaults in our sample correspond to institutions with
less than 1,000 MM e in assets. To keep the database as clean as possible
we will estimate the parameters using just the institutions with this assets
size.

The above formulas and the historical recovery rates from the FDIC
data imply LGDj,C = 19.13%, E(LGD2

j,Z) = 4.3178% and, therefore, αj =
29.26%. Using these estimates we recover the zPD and zLGD factors from the
historical default series of the FDIC and obtain that the correlation between
the default and recovery factors is 22.63%. The random LGD is introduced
replicating the factor correlation of the PD for the LGD as follows:

G =



22.63% 0% · · ·
MPD 0% · · · 0%

· · · 0% 22.63%
22.63% 0% · · ·

0% · · · 0% MLGD

· · · 22.63%


whereMPD = MLGD equates the GDP correlation matrix of the different

countries.21 Now not only PDj,z has to be estimated but also LGDj,z in
every simulation step. The optimal exponential twist and the optimal change
in the mean of the macroeconomic factors are obtained using PDj,Z and
LGDj,Z .

Figure 6 shows the comparison between the loss distributions of the
portfolio under random and constant LGDs. The 99.9% probability loss
is 36,970 MM e, that is, 1.15 times the loss level under constant LGD.

20See Gordy (2000) or Dullmann et al. (2010).
21For BBVA and Santander the weights of the LGD to the different LGD factors are

the same as those defined before according to their net interest incomes.
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The equivalent expected shortfall level is 19,326 MM e. Figure 7 shows
the risk allocation under VaR and ES for the new 99.9% probability loss
level. Comparing with Figure 5 we can see that this model assigns risk to
all the institutions, even to Santander whose initial LGD was 53,146 MM
e, much higher than the 99.9% probability loss. However, as now the LGD
is random, there are some scenarios where Santander defaults and the total
loss is close to 36,970 MM e.

[INSERT FIGURES 6 AND 7 AROUND HERE]

Compared with the constant LGD case, the random LGD provides the
following facts:

1. The confidence intervals in the risk allocation are wider. Now, in the
event of default, the losses have a bigger variability and, hence, the
estimation of E(Xi|L = V aR) is also more volatile.

2. The risk allocations based on the VaR and the ES are relatively “sim-
ilar” and the risk is not concentrated in some institutions as in the
case of constant LGD.

Under the Basel accord, the random LGD is considered under a very
broad definition of a downturn LGD, defined as the LGD under a stress
scenario. This constant downturn LGD tries to capture somehow the effect
of the random LGD.

In the previous setup, two clients with the same LGDj,C and the same
sensitivity to the macroeconomic variables will have the same LGDj,Z . To
avoid this possibility, an idiosyncratic term γj ∼ N(0, 1) can be included in
the previous formula:

LGDj,z,γj = Φ

Φ−1(LGDj,C)− αj(rzLGD + sγj)√
1− α2

j


with r2 + s2 = 1. This second specification reduces the correlation

between the LGD and the defaults as a new independent term is considered
but it can increase the variability of the recoveries.

The parameter r controls the variability in LGDj,Z over the business
cycle. According to our data, we obtain E(V ar(LGDj,z|z)) = 1.338%,22

implying a variability that is higher than the average LGDs of the big finan-
cial institutions. Intuitively, now, more institutions can generate high and

22Then, the LGD can change ±11.56% with respect to its mean.
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low loss levels compared to the constant LGD case and the confidence inter-
vals will be wider than under constant LGD and under fully macroeconomic
random LGD. Calibration of the LGD data provides r = 59.39%

Using these data, for every default and recovery observation in the FDIC
database, we recover the value rzLGD+sγj using the previous formula. Then,
for every year, we obtain empirically E(rzLGD + sγj) that equates rzLGD.
In this way we estimate zLGD for every year and obtain that the correlation
between zLGD and the default driving macroeconomic factor zPD is 19.02%.

This new specification causes some changes in the IS framework. For
instance, the exponential twist of the default probabilities conditional to
a given set of macroeconomic factors was defined as that generating an
expected loss equal to the target loss level. Now, conditional to these factors,
LGDj,z is not constant and we have two alternatives to find the optimum
exponential twist:

1. To keep using the average loss given default LGDj,C regardless of the
macroeconomic factors.

2. To estimate E (LGDj,z | z) and E
(
LGD2

j,z | z
)

for every macroeco-

nomic factor simulation.

We use the second method given that E(LGDj,z) has a closed-form ex-
pression given as

E(LGDj,z) = Prob(Vj,z < Φ−1(LGDj,C)) = Φ

(
Φ−1(LGDj,C)− αrzLGD√

α2(s2 − 1) + 1

)
Computing the optimal change in the mean of the factors is a bit more

complex as it requires estimating V ar(LGDj,z|z) or, equivalently, E
(
LGD2

j,z|z
)

,

this is,23

E
(
LGD2

j,z|z
)

= Φ2

((
Φ−1(LGDj,C)
Φ−1(LGDj,C)

)
,M,Σ

)
with

M =

(
αrzLGD
αrzLGD

)
Σ =

(
α2s2 + (1− α2) α2s2

α2s2 α2s2 + (1− α2)

)
23Φ2(X,M,Σ) denotes the probability distribution function (evaluated at the point X)

of a bivariate normal random variable with mean vector M and covariance matrix Σ.
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It is worthy to note that the optimal exponential twist is generated
using E

(
LGDj,Z,γj | Z

)
rather than the simulated LGDj,Z,γj . Then the

weight W1,i must be obtained using E
(
LGDj,Z,γj | Z

)
rather than the real-

ized LGDj,Z,γj , that is, using L∗i =
∑M

j=1Dj,iEADjE (LGDj | Z) instead of
Li. This is

W1,i = e−L
∗
i θ+ψ(θ)

where

ψ(θ) =
M∑
j=1

ln
(

1 + Pj,Z

(
e
E(LGDj,Z,γj |Z)EADjθ − 1

))
Under random conditional recoveries, the simulation process is as follows:

1. Get the change in the mean of the macroeconomic factors based on
approximating Prob(L ≥ l|Z) by a normal distribution with parame-
ters

µ =

M∑
j=1

EADjPDj,Z,θE(LGDj,Z,γj |Z)

σ2 =
M∑
j=1

EAD2
jPDj,Z,θE(LGD2

j,Z,γj |Z)− µ2

2. We obtain a sample of macroeconomic factors Z based on the change
in the mean estimated in the previous step.

3. For each macroeconomic scenario Z, we obtain the twist of the condi-
tional default probabilities (PDj,Z,θ) such that

M∑
j=1

EADjPDj,Z,θE(LGDj,Z,γj |Z) = l

4. Simulate losses for each macroeconomic scenario based on PDj,Z,θ and
a random drawn of LGDj,Z,γj .

5. The change in the conditional default probabilities is not obtained from
the simulated LGD (LGDj,Z,γj ) but from its expectation conditional
to Z. Then, the weight W1,i must be computed using E(LGDj,Z,γj |Z)
instead of LGDj,Z,γj .
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This simulation process is very interesting under the loop decoupling
framework as, for each macroeconomic scenario, the twist of the conditional
default probabilities remains constant and, then, the number of required
calculations decreases.

Figure 8 provides the loss distributions under the three possible specifi-
cations: constant LGD, macroeconomic random LGD (LGDC), and macroe-
conomic plus idiosyncratic random LGD (LGDR). It can be seen that con-
sidering the idiosyncratic term adds some more risk to the 99.9% loss level.

[INSERT FIGURE 8 AROUND HERE]

The effect of the idiosyncratic risk is quite small in the loss distribution.
Using the IS results, the 99.9% loss level under the idiosyncratic risk is
37,934 MMe, only 964 MM e more than that under the macroeconomic
LGD model.24 Hence, the impact of the idiosyncratic LGD on the loss
distribution is small compared with that of the macroeconomic LGD. It can
also be noted that, for small (large) loss levels, the idiosyncratic risk term
reduces (increases) the chance of those losses.

Regarding the risk allocation, Figure 9 shows that, in this case, the
(absolute and relative) risk allocation has even bigger confidence intervals
than in the previous models. The reason is that previously highlighted:
given default, the variability of the losses of the client j are wider under the
idiosyncratic LGD model than under the pure macroeconomic LGD.

[INSERT FIGURE 9 AROUND HERE]

Other LGD distributions have been tested for the pure macroeconomic
LGD model (LGDC) and the mixed macroeconomic and idiosyncratic LGD
model (LGDR).25

Table 4 includes the resulting loss distributions using the IS method and
shows that the results of the different random LGD models for the 99.9%
loss level are quite similar in all the cases except for the Log-Normal one.

[INSERT TABLE 4 AROUND HERE]

To conclude this subsection, we want to mention that, in the random
LGD framework, an alternative is to apply the IS method to the LGD dis-
tribution rather that to the default distribution. In fact with the IS ideas

24The ES equivalent loss is 19,473 MM e.
25Detailed results are not reported here and are available upon request.
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we are interested in changing the conditional losses distribution so that the
probability of high losses increases regardless we change the default proba-
bilities or the LGD distribution. This way of thinking only applies to the
case of random conditional LGD. In our case we have decided to maintain
the ideas introduced in the previous sections and change just the default
probabilities.

6.2 Market mode

This Subsection evaluates the portfolio risk under a market value model
instead of a default mode one. Under this model the rating of the compa-
nies may change over the time and these changes affect the firm valuation.
Then, it is more intuitive to talk about the portfolio value for a given sce-
nario rather than about portfolio losses. To calibrate a discount factor we
obtain the median CDS spread for a sample of European financial institu-
tions ordered by ratings.26 Figure 10 illustrates that the worse the ratings
the higher the CDS spread and that the spread required by the market has
increased considerably since 2008.

[INSERT FIGURE 10 AROUND HERE]

We have linearly extended the CDS values for the remaining ratings
according to their average default probability and obtained the daily series
of the median CDS spread level for each rating grade for the period 2008-
2011. We assume that this is a representative spread to obtain a discount
factor for the different ratings. However this spread assumes a LGD of
60% for bonds while we have an average LGD value of 18.35% x 1.378 =
25.28% over assets.27 Hence we adjust linearly the spread. We assume an
average maturity of 3 years for the assets in the portfolio; this is a mixture
of the retail banking assets with longer maturity (like mortgages) and the
corporate banking assets with shorter maturity. The average maturity of
the assets is a key assumption in the model, the greater the maturity the
higher the chance of high losses. Unluckily this information is not public for
banks. Table 5 reports the 3-year discount factors obtained for each rating
in this way.

[INSERT TABLE 5 AROUND HERE]

26These data correspond to 5-year senior CDS since 2008 and were obtained from Markit.
27As the financial institutions with available data in Markit have a high level of assets,

it is quite possible that the LGDs of these entities will be smaller than 25.28% but this is
a conservative assumption.
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To simulate the rating transitions, we use an average rating transition
matrix over the business cycle. We adjust the S&P public data in S&P
(2010) to take into account the non-rated companies and we do impose the
average probability of default previously adjusted. Table 6 includes the
rating transition matrix employed.

[INSERT TABLE 6 AROUND HERE]

6.2.1 Migration rule

For a default mode model, the default probability of the client j conditional
to a given macroeconomic scenario is

PDj,Z = Φ

Φ−1(PDj,C)−
∑k

f=1 αf,jzf√
1−

∑k
f=1 α

2
f,j


This means that, to simulate the defaults, we can generate a random

number Uj ∼ U(0, 1) and the client defaults if Uj ≤ PDj,Z .
In the case of a market mode model a client can move from an initial

rating to a new one. Let MPj,C,IR,FR denote the average probability (over
the cycle) for the client j of migrating from an initial rating IR to FR, a final
one. We can construct the accumulated probabilities AccumMPj,C,IR,FR.28

Then, for a given macroeconomic state, we can calculate the point in time
accumulated probability of migration between ratings, AccumMPj,Z,IR,FR,
as

AccumMPj,Z,IR,FR = Φ

Φ−1(AccumMPj,C,IR,FR)−
∑k

f=1 αf,jzf√
1−

∑k
f=1 α

2
f,j


We generate a random number Uj ∼ U(0, 1). Now, if Uj ≤ AccumMPj,Z,IR,D,

the new rating of the client would be D. If AccumMPj,Z,IR,CCC ≤ Uj ≤
MPj,Z,IR,D, the new rating would be CCC and so on. For each possible
final rating state the whole portfolio is evaluated.

6.2.2 Importance sampling

The IS framework must be modified in two ways: a) the exponential twisting
rule should be extended to deal with more than two possible states and

28For example, AccumMPj,C,IR,B− = MPj,C,IR,B− +MPj,C,IR,CCC +MPj,C,IR,D.
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b) the conditional portfolio value must be approximated to estimate the
macroeconomic factor mean shift.

Given a macroeconomic scenario Z, the exponential twist of the migra-
tion probabilities MP of the client j from the rating state IR to FR can be
extended as follows

MPj,Z,IR,FR,θ =
MPj,Z,IR,FRe

Vj,FRθ∑k
i=1MPj,Z,IR,ieVj,iθ

where Vj,i is the loan value to the counterparty j given the rating state
i, that is, EADj×DFi where DFi is the discount factor in the state i. Now,
the natural extension of the default mode twist to the case of the mark to
market valuation is

Vl =

M∑
j=1

k∑
h=1

Vh
MPj,Z,IR,he

Vj,hθ
∗∑k

i=1MPj,Z,IR,ieVj,iθ
∗

that is, the expected value of the portfolio equates the target value.
We use the normal approximation to change the mean of the factors.

Under this approximation, conditional to the macroeconomic state Z, the
portfolio value is distributed as N (µZ , σZ) with

µZ =
M∑
j=1

k∑
h=1

Vj,hMPj,Z,IR,h, σZ =

√√√√ M∑
j=1

k∑
h=1

V 2
j,hMPj,Z,IR,h − (µZ)2

According to the ratings, the market value of the Spanish financial sys-
tem is 2,842,499 MM e, representing a 2.7% discount with respect to the
total assets. Applying the discounting factors to the migration probabilities,
we get that the expected value of the portfolio is 2,839,535 MM e. Under
a default mode model we focused on 4,528 MM e losses (ten times the ex-
pected loss) and, then, the equivalent market value is equal to 2,842,499 -
4,528 = 2,837,971 MM e. We will use this number as the target value for
the IS method.

We will focus on value losses compared with the current market value
rather than with total assets. The idea is that the difference between total
assets and the current market value has been previously recognized through
profit and losses statement and, hence, it does not represent a possible future
loss. It means that debt holders and depositors should be concerned about
the possible losses over the current market value and the amount of own
resources that the institution has.
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Figure 11 shows the loss distribution of the portfolio. For each simu-
lation, losses are obtained as the market value minus the starting market
value, 2,842,499 MM e. The 99.9% probability loss is 68,852 MM e, ad-
ditional to the current market value loss, equal to 79,006 MM e. As the
simulation speed is very sensitive to the number of possible states, it is very
important to use only clearly different ratings.29

[INSERT FIGURE 11 AROUND HERE]

Regarding the VaR and ES based contributions we will allocate the
68,852 MM e loss over the current market value. Figure 12 provides the
results and shows that the top contributor is Santander.

[INSERT FIGURE 12 AROUND HERE]

7 Parameter variability

The previous sections have analyzed the credit loss distribution of the Span-
ish financial system at December 2010 by considering different credit risk
models. We study now the variability of the main parameters of the Va-
sicek (1987) model, namely, the EAD, PD, LGD, and the macroeconomic
sensitivity α. We start analyzing the business cycle variability obtaining
the loss distribution of the Spanish financial system at December 2007, a
pre-crisis period. Later, we will study the impact of the variability of the
risk parameters on the loss distribution by performing a sensitivity analysis.

7.1 Pre-crisis analysis

We estimate the loss distribution at December 2007 to asses the variability of
the credit risk measures over the business cycle. The results can be different
from those for December 2010 because of four possible reasons:

i) The ratings of the financial institutions may be different, therefore
their PD may have changed.

ii) Many mergers took place after 2007, therefore the portfolio at Decem-
ber 2007 is more granular.

iii) The amount of assets of the institutions in the portfolio is different, as
a consequence their EAD is different.

29The analysis has been performed using the rating scale considering modifiers but it
could be done without these modifiers.
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iv) As the LGD is assigned using asset buckets and the assets may have
changed, the LGD may have also changed.

In the case of the portfolio at December 2007 the size of the institutions
was similar to that at December 2010. However the ratings changed quite a
lot between both dates, being this the main driver of the change in the loss
distribution, followed by the change in the granularity of the portfolio.

Figure 13 includes the loss distribution of the Spanish financial portfolio
at December 2007 under the default mode valuation and constant LGD.
Compared with the loss distribution at December 2010, the loss distribution
is shifted to the left assigning less probability to higher losses. This is mainly
because the ratings deteriorated in the crisis period. In this case the 99.9%
probability losses are only 13,995 MM e, a 44% of the estimate for December
2010. It can also be seen that even though many mergers had not taken place
by December 2007 the loss distribution still has some discontinuities due to
the presence of very big institutions.

[INSERT FIGURE 13 AROUND HERE]

Regulators should be aware of this kind of risk measurement variability
if they want to use this type of models to quantify the risk of the financial
system and to require a financial institution to have enough capital to make
it safe. As suggested in Repullo et al. (2010), one way to deal with this issue
can be to set a variable confidence level for capital requirements so that in
periods with “high” ratings they can focus on more extreme probabilities
while they may reduce the confidence levels in periods with “low” ratings.

7.2 Parameter uncertainty

The variability of the risk parameters can be related to the business cycle
but also to some uncertainty in their estimates. The main reason for this
uncertainty is that financial institutions do not default frequently and, then,
the estimates of the risk parameters may not be very accurate. In this section
we study the effects of this uncertainty on the loss distribution. Our analysis
is based on several alternatives proposed in the literature for the three most
important risk parameters in the default mode and constant LGD model.

7.2.1 α uncertainty

Our previous results were based on the functional form of the parameter α
proposed by the Basel committee. According to this, αBIS varied between
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38% and 54% depending on the PD of the counterparty. Few studies analyze
possible values of α for financial companies. Most of these studies come from
the Moody’s corporation as they have a commercial software30 to implement
the Vasicek (1987) model. Examples of these studies are López (2004), Lee
et al. (2009), Qibin et al. (2009), and Castro (2012).

López (2004) estimated α for general corporations ordered by PD and
size buckets while Lee et al. (2009) estimated this parameter differentiating
by financial-industrial sector, PD buckets, and size buckets. Qibin et al.
(2009) obtained quarterly estimates for α and their percentiles considering
several companies grouped by sector (financial vs. industrial) and by ge-
ography (Europe-USA). Finally, Castro (2012) estimated a mean value of
α considering three different models. Table 7 shows the values of α from
these papers and illustrates that the Basel Committee estimates31 are close
or lower than the results in all these papers but for two of the models in
Castro (2012).

[INSERT TABLE 7 AROUND HERE]

Figure 14 reports the loss distributions obtained for the different macroe-
conomic sensitivity parameters for the portfolio of Spanish financial institu-
tions at December 2010.

[INSERT FIGURE 14 AROUND HERE]

The 99.9% probability losses range between 29,674 MM e and 45,305
MM e. However the latest value is obtained under the 90% confidence level
for the α estimate which is a very conservative assumption.

7.2.2 PD uncertainty

This uncertainty arises mainly because clients with high rating usually do
not default. As with the macroeconomic sensitivity parameter we test a set
of possible rating-PD calibrations and see the impact on the loss distribution.
Table 8 shows the average historical default rates from S&P for several
periods that start in 1981 and finish in 2007 or subsequent years up to
2012.32 As it can be seen firms graded with the two highest ratings never
default.

30This software is currently called RiskFrontier and it was previously known as KMV.
31These estimates will tend to be closer to 54% rather than to 38% because of the low

PD in banks.
32Data at rating modifier level is not available for the periods 1981-2007 and 1981-2008.
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[INSERT TABLE 8 AROUND HERE]

Few papers estimate PDs for rating grades and measure the uncertainty
in the estimates, mainly due to the absence of public information. One
alternative is to obtain confidence intervals using the observed defaults and
the total population of firms ordered by rating grades for a long enough
period.33 However the yearly number of defaulted companies is not publicly
available. Hanson and Schuermann (2006) estimated average default rates
by rating grade for the period 1981-2002 using S&P data and analytical
as well as parametric and non-parametric bootstrapping techniques to find
the standard deviations and the corresponding confidence intervals of the
PD estimates. Cantor et al. (2007) take a similar approach for the period
1970-2006 and Moody’s internal data. Table 9 shows the ratio between the
standard deviation of the estimated average PD and the estimated PD from
both papers. As Cantor et al. (2007) uses a longer period the uncertainty of
the estimates should be lower, however this is not always the case. There are
two possible reasons for this: i) the default database is different and ii) the
estimates uncertainty does not only depend on the number of observations
but also on the estimated average PD level.

[INSERT TABLE 9 AROUND HERE]

As we are using a slightly different calibration period we prefer to keep
our average PD estimates and apply the most conservative ratio in Table
9 to our PD estimates. To keep it simple we assume a normal distribution
of the average estimates and a 95% confidence interval to stress our PD
estimates. This approach imposes that all the estimates must be inside their
95% confidence interval at the same time. According to this methodology
our 95% confidence level for the AAA estimate is greater than the 95%
confidence level for the AA, therefore we bounded the PDs by that of the
next rating. Figure 15 reports the loss distribution of the portfolio under
this approach.

[INSERT FIGURE 15 AROUND HERE]

It can be seen that, under the PD uncertainty and with a 95% confidence
level, the 99.9% probability losses are 36,021 MM e, a 12% higher than the
initial estimate.

33These confidence intervals can be obtained analytically or numerically, for instance,
using a binomial distribution or a bootstrapping technique.
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7.2.3 LGD uncertainty

Regarding estimates of the LGD there is some information about bond LGDs
in financial institutions (see Altman and Kishore (1996)) but few papers
estimate the LGD on total assets of defaulted financial firms. James (1991)
provided a first estimate of average losses on assets of 30.51% using data of
US defaulted financial institutions over the period 1985-1988. This number
is much higher than that used by us mainly because a) it is a point-in-time
LGD estimate and b) most of the defaults in the sample were due to small
institutions with higher LGD. Therefore shifting the mean estimates.

More recent papers have focused on the losses for the depositors or the
deposits guarantee fund. Kuritzkes et al. (2002) analyzed the solvency of the
FDIC and based their results on the historical losses suffered by the FDIC
estimated in Bennett (2002) for the period 1986-1998. Kaufman (2004) gets
similar results to those in Bennett (2002) but for the period 1980-2002.

Bennett (2002) provided a very detailed analysis of the total losses on
total assets and for the FDIC due to bank failures but they do not perform an
analysis by asset buckets. Then we decided to update the results of Bennett
(2002) for losses to depositors and apply the ratio of losses to depositors to
losses on total assets from Bennett and Unal (2011).

Two reasons can explain the statistical uncertainty in the LGDs esti-
mates: i) the ratio of losses to depositors to losses on total assets may
change over the asset buckets34 and ii) the number of defaults is very low in
the highest assets bucket; this may affect the average LGD estimate if the
real LGD is not constant, as it is the case in the observed data. Regarding
this issue we can test the effect of the LGD uncertainty using the 95% confi-
dence level of the estimated LGD.35 Figure 16 includes the loss distribution
of the portfolio after considering these two sources of uncertainty.

[INSERT FIGURE 16 AROUND HERE]

Under the LGD uncertainty the 99.9% probability losses are 50,804 MM
e with a 95% confidence level. The effect of the LGD uncertainty is much
higher than that of α or PD. This is because the LGD has a linear impact on
the portfolio losses and the uncertainty in the LGD estimates of the biggest
institutions is very high due to the lack of historical defaults.

34Table 2 in Bennett and Unal (2011) shows that this ratio can be up to 1.47.
35If we have R defaults the LGD estimate is normally distributed with mean µ =∑R
i=1 LGDi/R and variance

∑R
i=1 (LGDi − µ)2/R.
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8 Conclusions

This paper has successfully extended the IS framework introduced by Glasser-
man and Li (2005) to the case of random recoveries and market mode mod-
els. We also tested the extensions of granular portfolios, simulation loop
decoupling, and mean based macroeconomic factors shift.

Considering the LGD as a constant is an assumption that is not sup-
ported by the historical data, therefore this extension allows us to better
capture the real behavior of the defaults. A similar conclusion can be drawn
from the market mode valuation: real portfolios can be exposed to mark to
market losses derived from rating changes. The simulation loop decoupling
and mean based macroeconomic factors shift extensions allow for a faster
and more accurate risk measurement. The loop decoupling is very interest-
ing under unifactorial but not granular portfolios as it reduces the number
of calculations required. On the other hand, mean based macroeconomic
factors shift enables a better sampling process and therefore it also reduces
the number of simulations required to obtain narrow confidence intervals of
the estimates.

All these extensions allow to use this method inside financial institu-
tions or for regulatory purposes. The extensions and modifications have
been tested on a portfolio including Spanish financial institutions using plain
Monte Carlo simulations as benchmark. Based on Bennett (2002), the LGD
of the different institutions has been obtained and used to estimate the loss
distribution of this financial system.

According to our results the 99.9% probability losses can range between
30,000 and 70,000 MM e depending on the LGD model and the valuation
method employed. However, under a granular portfolio with constant LGD,
the 99.9% probability losses would be only 13,478 MM e. The confidence
intervals of the loss distribution obtained using the IS approach are very
thin regardless of the LGD model or the valuation method used.

The confidence intervals of the risk allocation obtained using IS are much
thinner than those obtained with the plain Monte Carlo method, specially
for the VaR based risk allocation. In general, the risk allocation based on
the VaR has wider confidence intervals than that based on the ES. More
precisely, under constant LGD, the VaR based risk allocation has thin con-
fidence intervals and requires a low number of simulations. However, as we
move to a random LGD framework, the number of simulations required to
obtain small confidence intervals in the risk allocation increases consider-
ably. Hence, one possible way to deal with this issue is to use the IS method
to estimate the risk allocation in the case of constant LGD and try to extend
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other methods such as those in Pykhtin (2004), Huang et al. (2007), and
Voropaev (2011) to deal with the random LGD risk allocation.

Analyzing the suitability of the allocation criteria, we have found that
the results can vary considerably. Probably the best approach is to obtain
all the possible results and compare them. For example, under the CVaR,
a given client may have a null risk allocation (as happened with BBVA and
Santander in the constant LGD model) and, hence, provide a infinite risk
adjusted return, but this would lead to a higher concentration.

Finally we have studied the variability of the estimates over the business
cycle and the variability due to the uncertainty in the model parameters
estimates. We have shown that the risk estimates can vary considerably
over the business cycle. Regarding the parameters uncertainty we have
shown that currently the main driver of uncertainty in the risk estimates is
the LGD. This is due to the low number of historical defaults for the biggest
financial institutions bucket.

This kind of analysis can provide a basic tool for regulators to analyze the
solvency of the financial system and to study the relevance of the financial
institutions in the economy. This last issue is specially interesting to estab-
lish the so called systematically important financial institutions surcharge
in BIS III.
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Appendix

Multimodal distributions

We studied the behavior of the importance sampling algorithm on a sym-
metric portfolio made up of clients with the same PDi, LGDi, EADi, and
macroeconomic factor sensitivity. These clients were split in two halves that
are sensitive to two different macroeconomic factors. Surprisingly, we ob-
tained a mode of the optimum sampling distribution that was not symmetric
although the problem was completely symmetric.

To understand this issue, Figure 17 provides the function g(Z) = Prob(L ≥
l|Z)e−

Z′Z
2 for a simple case.36 Two modes can clearly be seen. These modes

have a direct impact on the estimated risk and on the risk contributions
estimates and generate a bias. The intuition is that using one of the modes
will simulate normal macroeconomic factors with a mean that is very close
to zero for one of the factors and positive for the other one. Then, most of
the simulations will generate large losses on half of the portfolio and almost
no losses on the other half. Hence, the importance sampling algorithm will
generate two effects:

• The loss distribution will be underestimated because only half of the
portfolio defaults in the simulations and the estimation confidence in-
tervals will be very big.

• Even though the portfolio is symmetric, the half of the portfolio that
does not default on the simulations will have very low risk contribu-
tions.

[INSERT FIGURE 17 AROUND HERE]

This bimodal characteristic should generate large confidence intervals for
the estimates. However, this is only the case if the two modes are not close.
To our knowledge, this is the first time that this bias has been detected in
the literature.

Glasserman and Li (2005) proposed using the mode of the optimun sam-
pling distribution to change the mean of the macroeconomic factors because
it is easier to be estimated than other statistical moments as the mean or the
median.37 Trying to solve this problem, we decided to estimate the mean or

36We use the normal approximation, 1,000 counterparties, parameters PD=1%,
LGD=40%, EAD=1,000, α = 55%, and target loss equal to 10 times the expected loss.

37It is easier to find numerically the maximum of a multivariate distribution than ob-
taining random samples from it.
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the median of the optimum distribution g(Z). Reitan and Aas (2010) pro-
posed estimating the mean using Markov Chain Monte Carlo (MCMC)38

and the Metropolis-Hasting algorithm, a very suitable procedure as it does
not require having a proper density function that integrates one as is our
case.

However the MCMC method is not very fast and we propose a method
based again on importance sampling to estimate the mean and variance of
g(Z). We will sample from a normal distribution and then use weights to
estimate these two moments. In more detail, these estimators are39

µg(Z) =
1

N

N∑
i=1

ZjcProb(Li > l|Zi)e−
ZiZ
′
i

2
1

φ(Zi)µ,Ω

σ2
g(Z) =

1

N

N∑
i=1

Z2
i cProb(Li > l|Zi)e−

ZiZ
′
i

2
1

φ(Zi)µ,Ω
− µ2

g(Z)

where Zi is obtained from a multivariate normal random variable φ(Z)µ,Ω.
After many trials, the best results are obtained when the parameter µ is set
to zero and the variance matrix Ω is the identity one.

The constant c ensures that we are working with a probability distribu-
tion, that is,

1 =
1

N

N∑
i=1

cProb(Li > l|Zi)e−
ZiZ
′
i

2
1

φ(Zi)µ,Ω

This method is much faster than the MCMC and, at the same time,
generates accurate results. Alternatively to the mean, the median of the
optimum g(Z) can also be used. This median is estimated for every macroe-
conomic factor of the set Z = {z1, · · · , zk}. In the case of the component
k, the median is obtained ordering the simulations 1 to N according to the

values of zk and then adding the weight 1
N cProb(Li > l|Zi)e−

ZiZ
′
i

2
1

φ(Zi)µ,Ω

until the value 50% is obtained, that is,

mediang(Zi) = min

(
zi,n

∣∣∣∣∣ 1

N

n∑
i=1

[
cProb(Lj > l|Zi)e−

ZiZ
′
i

2
1

φ(Zi)µ,σ

]
= 50%

)
38However, they did not highlight any bias related to the use of the mode.
39After all the experiments, the best results where obtained using as variance the max-

imum between 1 and the optimum variance.
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Loop decoupling

The importance sampling (IS) framework explained in Glasserman and Li
(2005) assumed that, for every macroeconomic factor simulation, an opti-
mal exponential twist is calculated and one default simulation is performed.
However, we can also generate several default simulations for every macroe-
conomic factor simulation. This is interesting when dealing with almost
unifactorial portfolios that are not granular as the number of required opti-
mizations gets reduced.

Let Ne and Ni denote the number of macroeconomic scenarios and
default simulations conditional to a macroeconomic scenario, respectively.
Then, N = NeNi. Again the confidence intervals for the estimations can be
estimated as explained before but, now, the defaults are not totally indepen-
dent as some of them share macroeconomic scenarios. Hence, the confidence
interval formulas must be slightly modified:

V ar( ̂Prob(L ≥ l)) =
1

N2

Ne∑
i=1

V ar

(
Ni∑
k=1

1(Li,k ≥ l)
f(Li,k)

g(Li,k)

)

=
Ne

N2
V ar

(
Ni∑
k=1

1(Li,k ≥ l)
f(Li,k)

g(Li,k)

)

=
Ne

N2
V ar(Ri) ≈

Ne

N2

 1

Ne

Ne∑
i=1

R2
i −

(
1

Ne

Ne∑
i=1

Ri

)2


where Li,k stands for the loss on the external simulation i and the internal
simulation k.

A similar result can be obtained for the expected shortfall (ES)

Xn1 =
1

N

Ne∑
i=1

Ni∑
k=1

Li,k1(Li,k ≥ l)
f(Li,k)

g(Li,k)
=

1

N

Ne∑
i=1

Si

Xn2 =
1

N

Ne∑
i=1

Ni∑
k=1

1(Li,k ≥ l)
f(Li,k)

g(Li,k)
=

1

N

Ne∑
i=1

Ri

V ar(ÊS) =
V ar(Xn1 − ÊSXn2)

X2
n2

=
1
N2

∑Ne
i=1 V ar(Si − ÊSRi)

X2
n2

≈ N

∑Ne
i=1 (Si − ÊSRi)2∑Ne

i=1Ri
(4)

The previous formula can be used to obtain the variance of the risk
contributions. The variance of the expected shortfall contributions of client
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j can be obtained replacing Si in (4) by Si,j

Si,j =

Ni∑
k=1

xi,k,j1(Li,k ≥ l)
f(Li,k)

g(Li,k)

The variance of the VaR contribution estimates of the client j is obtained
changing ÊS by V̂ aR in (4) and redefining Si and Ri by Si,j and Ri,j ,
respectively

Si,j =

Ni∑
k=1

xi,k,j1(l(1−R) ≤ Li,k ≤ l(1 +R))
f(Li,k)

g(Li,k)

Ri,j =

Ni∑
k=1

1(l(1−R) ≤ Li,k ≤ l(1 +R))
f(Li,k)

g(Li,k)

As it can be seen, the sums of the default simulations for every macroe-
conomic factor simulation have to be performed. This forces to keep all the
default data for one macroeconomic simulation. However, this is a tractable
problem as, in general, 1, 000 ≤ Ne ≤ 10, 000 and 100 ≤ Ni ≤ 1, 000.

In the case of the financial institutions there is a big non-granular effect
and, then, it may be interesting to decouple the simulation loops. In this case
we generate the loss distribution using, for example, 1,000 x 100 simulations.
This method generates very accurate results and, at the same time, is much
faster than the general one on the case of very non-granular portfolios as
happens in the Spanish financial system.
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Appendix of Tables

Table 1: Spanish financial institutions involved in a merger / acquisition
process or belonging to the same corporation at December, 2010.

New Entity Original Institutions

Banca Civica Caja Municipal de Burgos, Caja Navarra, Caja Canarias,
CajaSol, Caja Guadalajara

Banco Base Caja Asturias, Banco de Castilla La Mancha,
Caja Cantabria, Caja Extremadura

Banco Mare Nostrum Caja Murcia, Caixa Penedés, Caja Granada, Caja Sa Nostra

Banco Popular Banco Popular, Banco Popular Hipotecario, Banco Popular-e,
Popular banca privada

Bankia Caja Madrid, Bancaja, Caixa Laietana, Caja Avila,
Caja Segovia, Caja Rioja, Caja Insular

BBK BBK, Cajasur

BBVA BBVA, Finanzia, Banco Depositario BBVA, UNO-E Bank

Caixabank La Caixa, Caixa Girona, Microbank

Caja 3 Caja Inmaculada, Caja Burgos CCO, Caja Badajoz

Caja España de Inversiones Caja España, Caja Duero

Catalunya Caixa Caixa Cataluña, Caixa Tarragona, Caixa Manresa

Novacaixagalicia Caja Galicia, Caixanova

Santander Banco Santander, Banesto, Santander Investment, Openbank,
Banif, Santander Consumer Finance

Unicaja Unicaja, Caja Jaén

Unnim Caixa Sabadell, Caixa Terrassa, Caixa Manlleu

Table 2: LGD estimates for losses on deposits and losses on assets for the
period 1986-2009 obtained from the FDIC public data by institution size.

Assets (in $bn) Count Mean (deposits) Mean (assets)

< 1 1148 18.61% 25.65%
1 - 5 49 15.50% 21.37%
5 - 15 7 9.95% 13.72%
> 15 8 6.39% 8.82%
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Table 3: BBVA and Santander country exposures obtained according to the
net interest income data published in their 2010 Annual Reports.

Country BBVA Santander

Spain 37.7% 18.8%
Mexico 33.5% 5.9%
United States 9.6% 6.8%
Argentina 2.8% 0%
Chile 4.0% 5.3%
Colombia 4.0% 0%
Peru 4.8% 0%
Venezuela, RB 3.7% 0%
Portugal 0% 2.6%
United Kingdom 0% 14.5%
Brazil 0% 36.8%
Italy 0% 0.7%
Finland 0% 0.8%
Germany 0% 7.5%

Total 100% 100%

Table 4: Comparison of the 99.9% probability loss levels under different
random LGD models. We consider a pure macroeconomic LGD (LGDC),
based on transformations of a random normal macroeconomic variable zLGD,
the random LGD conditional to the macroecomic variable zLGD (LGDR),
and the case of LGD|zLGD with Beta and Gamma distributions.

Model Loss (MM e) Model Loss (MM e)

Normal LGDC 37,160 Probit Normal LGDC 35,999
Normal LGDR 38,131 Probit Normal LGDR 35,318
Lognormal LGDC 29,309 Normal2 LGDC 36,826
Lognormal LGDR 36,139 Normal2 LGDR 36,587
Logit Normal LGDC 35,909 Beta LGDR 37,616
Logit Normal LGDR 34,997 Gamma LGDR 37,578
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Table 5: Discount factors by rating grade based on the average CDS spread
and 3-year average maturity.

Investment Grade

Rating AAA AA+ AA AA- A+ A A- BBB+ BBB BBB-

Discount Factor 98.71% 98.69% 98.6% 98.37% 97.93% 97.14% 96.96% 96.63% 96.02% 95.94%

Speculative Grade

Rating BB+ BB BB- B+ B B- CCC/C

Discount Factor 95.79% 95.51% 94.99% 94.04% 92.33% 89.26% 83.93%

Table 6: Average 1-year rating migration matrix from S&P (2010).
AAA AA+ AA AA- A+ A A- BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC D

AAA 91% 4% 3% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.0249%
AA+ 2% 79% 12% 4% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.0253%
AA 1% 1% 84% 8% 3% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.027%
AA- 0% 0% 5% 80% 10% 3% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.03%
A+ 0% 0% 1% 5% 81% 9% 3% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.0356%
A 0% 0% 0% 1% 5% 81% 7% 3% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0.0459%
A- 0% 0% 0% 0% 1% 7% 79% 8% 3% 1% 0% 0% 0% 0% 0% 0% 0% 0.0651%
BBB+ 0% 0% 0% 0% 0% 1% 7% 78% 9% 2% 0% 0% 0% 0% 0% 0% 0% 0.1005%
BBB 0% 0% 0% 0% 0% 1% 1% 7% 80% 6% 2% 1% 0% 0% 0% 0% 0% 0.1659%
BBB- 0% 0% 0% 0% 0% 0% 0% 2% 9% 76% 6% 3% 1% 1% 0% 0% 0% 0.2871%
BB+ 0% 0% 0% 0% 0% 0% 0% 1% 2% 13% 69% 7% 4% 1% 1% 0% 1% 0.5112%
BB 0% 0% 0% 0% 0% 0% 0% 0% 1% 3% 9% 71% 9% 3% 2% 1% 1% 0.9257%
BB- 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 2% 9% 71% 9% 4% 1% 1% 1.6925%
B+ 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 7% 73% 9% 3% 2% 3.111%
B 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 9% 66% 9% 7% 5.735%
B- 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 3% 10% 60% 14% 10.5892%
CCC/C 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 2% 3% 11% 63% 19.5689%

Table 7: Comparison of the values of α in López (2004), Lee et al. (2009),
Qibin et al. (2009), and Castro (2012). αLo denotes the estimate in López
(2004) for the bucket of companies with the biggest assets, αM2 indicates
the value for the buckets of smallest PD and biggest assets αM2 in Lee et al.
(2009), and αM1,50%, αM1,75%, and αM1,90% are the values for the percentiles
50%, 75% and 90% in Qibin et al. (2009). Finally, αC,i, i = 1, 2, 3 denote
the mean estimates for the three models tested in Castro (2012).

López (2004) Lee et al. (2009) Qibin et al. (2009) Castro (2012)

Parameter αLo αM2 αM1,50% αM1,75% αM1,90% αC,1 αC,2 αC,3
Value [47%-57%] 59% 45% 59% 74% 69% 43% 66%
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Table 8: Average S&P default rates for the periods 1981-2007, 1981-2008,
1981-2009, 1981-2010, 1981-2011, and 1981-2012.

Rating 2012 2011 2010 2009 2008 2007

AAA 0% 0% 0% 0% 0% 0%
AA+ 0% 0% 0% 0% 0% 0%
AA 0.01% 0.01% 0.01% 0.02% 0.03% 0.01%
AA- 0.02% 0.02% 0.03% 0.03% 0.05% 0.02%
A+ 0.05% 0.05% 0.05% 0.06% 0.07% 0.05%
A 0.06% 0.07% 0.07% 0.07% 0.08% 0.06%
A- 0.07% 0.07% 0.07% 0.08% 0.09% 0.07%
BBB+ 0.15% 0.16% 0.16% 0.17% 0.15% 0.14%
BBB 0.24% 0.25% 0.26% 0.27% 0.24% 0.23%
BBB- 0.3% 0.3% 0.31% 0.32% 0.28% 0.27%
BB+ 0.61% 0.63% 0.67% 0.66% 0.73% 0.73%
BB 0.83% 0.86% 0.88% 0.9% 0.99% 1%
BB- 1.4% 1.42% 1.47% 1.5% 1.65% 1.67%
B+ 2.36% 2.41% 2.47% 2.55% 2.32% 2.35%
B 6.81% 6.98% 7.17% 7.37% 6.7% 6.79%
B- 9.6% 9.8% 9.99% 10.23% 9.3% 9.43%
CCC/C 23.53% 23.41% 23.56% 23.61% 25.67% 25.59%

Table 9: Ratio of standard deviation of the PD estimate and the PD esti-
mate.

Rating Cantor et al. (2007) Schuermann (2004)

AAA - -
AA 71.19% 62.78%
A 38.27% 23.12%
BBB 14.24% 23.52%
BB 6.64% 9.87%
B 3.51% 4.37%
CCC 3.84% 4.36%
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Figure 1: Assets and deposits share of the top twenty-five Spanish financial
institutions.
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Figure 2: Assets, Expected Loss, and Basel 99.9% loss share of the top 25
Spanish financial institutions. Left and right graphs show, respectively, the
amount allocation and the allocated amount relative to the institution size.
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Figure 3: Loss distribution using 10,000 importance sampling (IS) and
1,000,000 plain Monte Carlo (MC) simulations. The black and red lines
show, respectively, the plain Monte Carlo and IS results while the blue lines
indicate the 5%-95% confidence interval of the IS estimates. Left and right
graphs show, respectively, the tail distribution and its detail in the neigh-
borhood of the 99.9% probability loss level.
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Figure 4: Expected Shortfall (ES) using 10,000 importance sampling (IS)
simulations. The red and blue lines show, respectively, the IS results for the
expected shortfall estimate and its 5%-95% confidence intervals.
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Figure 5: Risk allocation under constant LGD based on expected loss (EL),
Basel loss 99.9% (BIS), contributions to VaR (CVaR) and ES (CES) both
using importance sampling (IS) and plain Monte Carlo (MC) criteria. Left
and right graphs show, respectively, the total risk allocation and the allo-
cated risk relative to the institution size.
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Figure 6: Comparison of the random LGD (Rnd LGD) and constant LGD
(Const LGD) loss distributions. Black lines show the results of the plain
Monte Carlo (MC) method using 1,000,000 simulations. The red and blue
lines show, respectively, the importance sampling (IS) estimates and their
5%-95% confidence intervals using 10,000 macroeconomic scenarios and 100
default simulations on each macroeconomic scenario. Left and right graphs
show, respectively, the tail distribution and its detail in the neighborhood
of the 99.9% probability loss level.
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Figure 7: Risk allocation under macroeconomic random LGD (LGDC) for
the VaR (CVaR) and the ES (CES) criteria. Continuous and dashed lines
represent, respectively, the IS estimates and the 5%-95% confidence inter-
vals. Left and right graphs show, respectively, the total risk allocation and
the allocated risk relative to the institution size.
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Figure 8: Comparison of the two random LGD models (Rnd LGDC / Rnd
LGDR) and constant LGD (Const LGD) loss distributions. Black lines show
the results of the plain Monte Carlo (MC) method using 1,000,000 simula-
tions. The red and blue lines show, respectively, the importance sampling
(IS) estimates and their 5%-95% confidence intervals using 10,000 macroe-
conomic scenarios and 100 default simulations on each macroeconomic sce-
nario. Left and right graphs show, respectively, the tail distribution and its
detail in the neighborhood of the 99.9% probability loss level.
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Figure 9: Risk allocation under mixed macroeconomic and idiosyncratic ran-
dom LGD (LGDR) for the VaR (CVaR) and ES (CES) criteria. Continuous
and dashed lines represent, respectively, the IS estimates and the 5%-95%
confidence intervals. Left and right graphs show, respectively, the total risk
allocation and the allocated risk relative to the institution size.
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Figure 10: Median 5Y CDS spread evolution for a set of European financial
institutions ordered by rating grades over the period 2007-2010.

49



0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Distribution

 

 
IS 10,000 x 100
MC 1,000,000

6 6.5 7 7.5 8

x 10
4

10
−3

Loss Distribution

 

 
IS 10,000 x 100
MC 1,000,000

Figure 11: Loss distribution under the market mode. The black line shows
the results of the plain Monte Carlo (MC) method using 1,000,000 simula-
tions. The red and blue lines show, respectively, the importance sampling
(IS) estimates and their 5%-95% confidence intervals using 10,000 macroe-
conomic scenarios and 100 default simulations on each macroeconomic sce-
nario.
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Figure 12: Risk allocation under market valuation for the VaR (CVaR) and
ES (CES) criteria. Continuous and dashed lines represent, respectively, the
IS estimates and the 5%-95% confidence intervals. Left and right graphs
show, respectively, the total risk allocation and the allocated risk relative to
the institution size.
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Figure 13: Loss distribution of the portfolio at December 2007 using 10,000
x 100 importance sampling (IS) and 1,000,000 plain Monte Carlo (MC)
simulations. The black and red lines show, respectively, the plain Monte
Carlo and IS results while the blue lines indicate the 5%-95% confidence
interval of the IS estimates. Left and right graphs show, respectively, the
tail distribution and its detail in the neighborhood of the 99.9% probability
loss level.
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Figure 14: Loss distribution of the portfolio at December 2010 under the
different macroeconomic sensitivity parameter estimates and using 10,000
x 100 importance sampling (IS) and 1,000,000 plain Monte Carlo (MC)
simulations. Left and right graphs show, respectively, the tail distribution
and its detail in the neighborhood of the 99.9% probability loss level.
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Figure 15: Loss distribution of the portfolio at December 2010 under PD
uncertainty and using 10,000 x 100 importance sampling (IS) and 1,000,000
plain Monte Carlo (MC) simulations. The black and red lines show, respec-
tively, the plain Monte Carlo and IS results while the blue lines indicate the
5%-95% confidence interval of the IS estimates. Left and right graphs show,
respectively, the tail distribution and its detail in the neighborhood of the
99.9% probability loss level.
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Figure 16: Loss distribution of the portfolio at December 2010 under LGD
uncertainty and using 10,000 x 100 importance sampling (IS) and 1,000,000
plain Monte Carlo (MC) simulations. The black and red lines show, respec-
tively, the plain Monte Carlo and IS results while the blue lines indicate the
5%-95% confidence interval of the IS estimates. Left and right graphs show,
respectively, the tail distribution and its detail in the neighborhood of the
99.9% probability loss level.
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Figure 17: Function g(x) provided by the normal approximation considering
a portfolio of 1,000 counterparties and the parameters PD = 1%, LGD =
40%, EAD = 1, 000, and α = 55%. Each half of the portfolio is exposed to
a certain macroeconomic factor.
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