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Abstract 

 

The recent financial crises amplified the need for rigorous stress testing in order assess the 

resilience of the banking systems under an adverse macro scenario by regulatory authorities. In 

this paper, we present a dynamic balance sheet simulation engine for stress testing, called 

Deep-Stress, which constitutes a new approach for emulating bank’s key financial variables in a 

holistic way by utilizing deep learning algorithms. To evaluate the performance of the proposed 

model we compare its forecasting accuracy with other accepted stress testing frameworks: 

constant balance sheet approach and dynamic balance sheet approach with satellite modelling. 

The prediction error of the Capital Adequacy Ratio drops significantly under the deep learning 

approach, due to its better performance in simulating the one year ahead P&L evolution of the 

financial institutions. The proposed methodological framework can become a powerful tool for 

macro prudential stress testing and could strongly increase the signalling power of an early 

warning system in order to predict future financial crises and individual bank’s failures.  
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1. Introduction – Motivation 

Financial Stability is a core component for economic prosperity of countries and individuals. 

The recent financial crises of 2007 had a measurable effect on the life of many individuals across 

the globe through the realization of significant income reduction, the increasing unemployment 

rate as well as an overall economic slowdown [3]. The methods of risk management that have 

been employed before the crises proved to be inadequate to provide early warning signs to 

central governments and banks in order to proactively intervene and prevent adverse financial 

events. Regulatory authorities, and international organizations such as IMF performed stress 

testing exercises long before the financial crisis of 2007 to assess the resilience of the banking 

system but failed to predict the unprecedented economic turmoil after Lehman’s default.   

Previous Stress testing frameworks disregarded the propagation channels of a default 

event through the whole micro macro dynamics of the global interconnected financial system. 

Additionally, the non-linear relationship that materialize between the macro economy and the 

financial balance sheets was not adequately captured due to the broadly use of linear regression 

models. Moreover, weaknesses in the validation function of stress testing frameworks also 

decreased the confidence in the quantification of the impact of an adverse macro scenario in 

the banking system.  Subsequently,  market participants and regulators have performed 

rigorous stress testing exercises enhancing statistical , using more granular data, in order to 

assess and predict the risks and in some cases attempting to quantify second round effects 

stemming from a liquidity shock or from the default of a counterparty.  

Another aspect in the current regime, i.e. post crisis, of supervisory regulation is the 

collection of a significant amount of granular information as a response to a more proactive 

supervision. Although, the integration of big data in the banking supervision, regulatory 

authorities has not yet explored statistical techniques such as machine learning, in order to 

extract more information regarding the risks in their banking systems. Segmentation, 

classification and data mining functionalities are important tools for regulators to identify 

weaknesses in the supervised financial entities that can be further enhanced by using machine 

learning techniques.  

Machine learning algorithms have drastically improved the capabilities of performing 

pattern recognition, signal analysis and forecasting in various scientific fields such as 

biomedical, engineering and social sciences. The structure of machine learning method offers 

the ability to adjust in streaming sequences using continuous learning algorithms as well as 

offer state-of-the-art performance in the recognition of and evolving patterns in time series 

data. In addition, deep learning has proven effective to deal with high dimensional data. Recent 

studies demonstrate that machine learning techniques could lead to better predictive 

performance in financial time series modelling problems due to their multidimensional and 

non-parametric structure [17,18,19]. This can be attributed to their capacity to learn and adapt 

to new data. Thus, improve their performance over time, offer increased capabilities to capture 

non-linear relationships, and decompose the noise that often exist in financial data. 

Furthermore, this new generation of statistical algorithms offer the necessary flexibility in 

modelling multivariate time series, as its structure includes a cascade of many layers with non-

linear processing agents. The functionality of deep learning networks consists of the interaction 

of layers that simulate the abstraction and composition of similar functions in the human brain. 

Therefore, via capturing the full spectrum of information contained in financial datasets, deep 

learning networks are capable of exploring in depth the inherent complexity of the underlying 

dynamics and dealing with high-dimensional time series data.  

This empirical study introduces a new statistical technique for stress testing using deep learning 

algorithms to model banks financial data in a holistic way. In particular, financial or macro 
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shocks are propagated to banks’ balance sheets by simultaneously training deep neural 

networks with macro and financial variables, thus, taking advantage of their capabilities to 

capture more information hidden in big datasets. We develop inference algorithms for our 

networks, suitable for learning financial time series data on a multivariate forecasting setup. 

The main propose of this study is to illustrate a holistic framework for balance sheet stress 

testing, which overcomes the limitations of the currently approaches and yields more robust 

results by loosening the static balance sheet assumption. Our research analysis based on the 

intersection of computational finance and statistical machine learning, leverages the unique 

properties and capabilities of deep learning networks in order to increase the prediction efficacy 

of the capital adequacy and minimize the modelling error. Under the proposed approach, 

forecasting of balance sheet items can be heavily supported by artificial intelligence algorithms 

simulating better the propagation channels of the macro economy into the financial institutions 

business models.  Our vision is to provide a stress testing framework that leads to an 

implementation of an early warning system for financial shocks on individual banks’ balance 

sheets. 

The structure of this study is organized as follows. In section 2, we are focused on the 

related literature review regarding financial institutions stress testing. Section 3 describes the 

data collection and processing. In section 4, we provide details regarding the estimation process 

of the various stress testing frameworks examined in this study. In section 5, we compare various 

methodologies and provide our experimental results using a test dataset of financial balance 

sheet sequences. With our methodology, we assess the applicability of the proposed approach 

as well as the generalization in its forecasting capacity. Finally, in the concluding section 6, we 

summarize the performance superiority of the proposed methodology and identify any 

potential weaknesses and limitations of this study, while we also underline the need for further 

research.   

 

2. Literature review 

The architecture of current stress testing frameworks is usually a feed forward shock engine 

not capturing the nexus of relationships of the highly interconnected financial system and the 

accompanied feedback loops in the macro environment. The following graph describes a typical 

macro stress testing framework used mainly by regulatory authorities currently.  

 

Figure 1: Current feed forward architecture of currently established stress testing frameworks  
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A typical stress testing engine is composed by four elements: the perimeter of risks 

subjected to stress, the scenario design, the calculation engine that transforms the shocks into 

an outcome in Banks balance sheet, and a measure of the outcome [1]. In particular the most 

well-known stress testing exercises currently publicly available are: EBA[4], CCAR (FED) [8], PRA 

- Bank of England [7] , ECB (top down) [2] [6], Bank of Canada[28], Central Bank of Austria 

(ARNIE)[27], IMF[29] and Bank of Greece (Diagnostic Exercise)[5]. The structure of all these stress 

testing exercises follows a left to right flow to estimate the impact of an adverse shock in the 

economy. One of the basic components of all these exercises is the time horizon which span 

from 2 to 5 years to estimate future losses for the participating banks. During this period the 

macro economic scenario is given. This set of macro scenarios is passed through to financial 

institutions to project their P&L and RWA and eventually estimate capital using regulatory 

hurdle rates. Some of these exercises include in their structure a second round effects 

mechanism for the banking system to account for contagion risk. Macroeconomic feedback 

effects i.e for example the impact of a significant institution becoming insolvent in the macro 

economy, usually are not considered in these frameworks. Stress tests under this structure can 

mainly serve as a tool to challenge the recovery plans of banks and to assess their viability. But 

their role as an early warning system is questionable.  

As Drehmann [11] pointed, systemic banking crises are reflected in the performance of 

credit and property prices and usually they appear at the high point of the medium-term 

financial cycle. Therefore, crisis starts before it’s depicted in macro scenarios. According to Borio 

[1] a financial system is not fragile when a large financial shock materializes but when even a 

small negative change in financial and macro variables is amplified through the different 

dynamic system relationships and can lead to a systemic shock. For example after the default 

of Lehman the financial market crashed and the US GDP exhibited a sharp decrease causing a 

structural break in the macro data time series. Current versions of stress tests possess a macro 

scenario over time in a static way without modelling or tracking in a path dependent nature the 

multistep decision process and financial behaviour that in reality takes place from all economic 

participants. [30] Furthermore, non-linearity is not modelled adequately in the statistical 

techniques currently employed. Risks under the current globalized market tend to be amplified 

when a stress event occurs. Non-linear relationship kicks in through channels of amplification 

leading to a chain of unpredictable events from the static nature of stress test. Under stressed 

conditions the relationships between modelled variables are non-linear [31] [9] and exhibit 

structural breaks [10]. Stress testing frameworks are composed by standalone models usually 

combined in a qualitatively manner. A small single-step prediction error at the beginning could 

accumulate and propagate when combined without taking the correlation of the financial 

variables, often resulting in poor prediction accuracy. Furthermore standalone models can lead 

to double counting effects or overestimation of the impact stemming from the changes of the 

predefined macro variables. Finally univariate setups are not able to model adequately complex 

distributed variables with non-linear behaviour. 

Current stress testing frameworks exhibit simplification assumptions that may affect the 

reliability of the final estimation.  EBA EU’s wide stress testing is a bottom up exercise covering 

only specific risk on banks individuals balance sheet based on a macro scenario usually based 

on simplified assumptions. One of the weaknesses in EBA methodology is the static balance 

sheet assumption i.e assets and liabilities remain constant over the horizon without 

acknowledging for management actions and new generation of loans. In addition mitigation 

actions are taken into account after the stress testing are finalized through a strong qualitative 

overlay and not in a dynamic way. [4]  

System wide stress testing exercises on a micro prudential level are heavily relied upon on 

the interaction with individual banks with respect to data analytics and propagating the macro 

scenarios to their balance sheet. Thus estimations are not performed in a uniform statistical 

process but inherit the model deficiencies and forecasts errors embedded in banks individual 
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models. The heterogeneity in the results increases the estimation errors significantly and there 

is no robust process for regulators to account for it. Thus the need for independent central 

modelling for simulating the financial system is of great importance. [13] Furthermore the stress 

testing process involves the disclosure of the methodological framework to all market 

participants which in turn there are evidence of second round effects regarding the accounting 

treatment of banks. Specifically based on the study [14] banks that participate in regulatory 

exercises tend to manipulate their provisions for credit risk as well as to absorb the impact of 

the upcoming stress test.  

Finally Stress Testing outcomes in the current regulatory exercises heavily rely on 

regulatory ratios like capital adequacy ratio which in turn is highly dependable on the estimation 

of RWA. Evidence in the literature [32] indicates that relaying in the risk weights applied 

internally by the financial institutions under the Basel Framework can lead to underestimation 

in capital needs. This is driven by the significant variability stemming from internal models of 

the banks when applying internal model methods. Furthermore the regulatory framework 

currently employed for assessing the RWA cannot capture the hidden risk in banks complex 

portfolio structure. In the current literature [33] there evidence regarding especially more 

sophisticated banks (A-IRB) that they may perform regulatory arbitrage and manipulates their 

true risks to lower their capital requirements. Thus robust macro modelling of the RWA using 

an independent top down model is important to account for these cases.  

Although a significance progress in designing stress testing has been implemented in 

recent years, there are concerns that this type of exercises cannot be used as early warning 

systems for financial distress [3]. By analysing the publications regarding stress testing exercises 

either performed by regulators or individuals banks we outlined a series of weaknesses and 

inefficiencies to provide a clear and concise view on the nature and on the way how the 

proposed approach in this study, DeepStress, attempts to address part of the aforementioned 

weaknesses.  

Deep neural networks architecture is one of the main innovations in our proposed 

approach for dynamic balance sheet stress testing. DeepStress is putting all the components 

together in a multivariate structure. We identify the main channels of risk propagation in a 

recurrent form to account of all the existing evidence of feedback effects in a financial 

institutions’ balance sheet. The current architectures is constrained by the use classical 

econometric techniques which offer limited capabilities for simulating complex systems. 

DeepStress accounting for temporal patterns in banks’ balance sheets provides a dynamic 

modelling approach. This is achieved through the multivariate training of deep neural networks 

taking account the dynamic nature of banks metrics and the whole structure of the bank’s 

balance sheet.  DeepStress is composed by multivariate input and output layers able to capture 

the cross correlation between balance sheet items and the macro economy. Training is 

performed as one big complex network minimizing estimation errors and double counting 

effects among various financial variables. 

To account for non-linear relationships that materialize under adverse macroeconomic 

conditions machine learning techniques like deep learning can provide more efficient 

estimations. Deep Neural networks based on academic literature are capable of simulating real 

life phenomena where relationships are complex.  Therefore, our proposed framework using 

multilayer deep networks envisages in capturing the dynamics inherent in a financial distress. 

In addition the architecture of DeepStress aims to capture the amplifications channels leading 

to structural breaks.  

DeepStress is a proposed micro macro prudential stress testing framework independently 

assessing the system without relying on banks for performing its estimations. Methodology 

applied relies only on publicly available data and models are developed in a uniform way thus 

making the process of validation and error correction more feasible to be performed centrally. 
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In addition offers the opportunity to experiment on advanced statistical machine learning 

techniques a need recognized also in the academic literature [12].  

To sum up, our modelling approach is balanced between capturing the determinants that 

strongly affect the health of a financial institution, while at the same time developing a dynamic 

balance sheet simulator engine for establishing an early warning system to predict bank failures 

under an adverse scenario. The modelling framework that we implement captures temporal 

dependencies in a bank’s financial indicators and the macro economy. At the same time, it 

explores up to 3 years of lagged observations, which are assumed to carry all the necessary 

information to describe and predict the financial soundness of a bank, and combines their 

evolution with the relevant macroeconomic indicators. Overall, we envisage that DeepStress 

offers a dynamic simulation engine projecting the whole status of a financial institution one 

year ahead in an efficient way.  

3. Data collection and processing 

We have collected information of non-failed, failed and assisted entities from the database 

of the Federal Deposit Insurance Corporation (FDIC), an independent agency created by the US 

Congress in order to maintain the stability and the public confidence in the financial system. 

The collected data are related to all US banks, while the adopted definition of a default event 

in this dataset includes all bank failures and assistance transactions of all FDIC-insured 

institutions. Under the proposed framework, each entity is categorized either as solvent or as 

insolvent based on the indicators provided by FDIC. Observations regarding failed banks are 

excluded from the analysis since stress testing is performed on healthy financial entities.  

The dataset covers the 2007-2015 period; a 9 years’ period with quarterly information 

resulting in dataset with more than 175,000 records. The selected time period, seems to 

approximate a full economic cycle, in terms of the Default Rate evolution. Figure 1, shows the 

number of records included in each observation quarter and the corresponding default rate. 

From a supervisory perspective, most of the financial institutions in the sample apply the 

standardized approach for measuring the Credit risk weights assets based on the United States 

adaptation of the Basel regulatory framework [20].  
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Figure 2: USA financial institutions in the sample. Historical overview for the period 2008-2014 of the failed 

entities (source: FDIC)  

The dataset was split into three parts (Figure 2). An in-sample dataset (Full in sample) that 

is comprised of the data pertaining to the 80% of the examined companies over the observation 

period 2008-2013 amounting to 101.641 observations.  For performing hyper parameter tuning 

of deep neural networks we define an out-of-sample dataset (validation sample), including the 

rest 20% of the observations for the period 2008-2013 amounting to 25.252 observations. This 

is useful for deep learning models, in which the training sample is used to train various 

candidate models with different architectures and specifications, while the validation set is used 

for selecting the best parameter setup and avoid overfitting in the training dataset. This way 

the generalization capabilities in other datasets of the final selected model increases 

substantially. Finally performance evaluation is investigated on an out-of-time dataset (test 

sample) that spans over the 2013-2015 observation period reaching 48.756 observations. In all 

cases, the dependent (target) variable is the CAR ratio of each bank in the end of the one year 

forecast horizon. To summarize, we performed model fitting using exclusively the available 

training sample prescribed above. To perform model selection, we employed five-fold cross-

validation, using predictive accuracy as our model selection criterion (CAR ratio prediction 

error). Performance evaluation results are assessed on the available test sample, to allow for 

evaluating the generalization capacity of the developed models.  

In developing our model specifications, we examine an extended set of variables that fully 

describe the financial status of each bank in the sample. The complete list of financial variables 

examined is included in Annex II.  In addition to the above-mentioned variables, we have also 

included in the dataset quarterly observations of the most commonly used macro-economic 

variables. Macro variables are the main input in the models developed since they are important 

for scenario analysis under a stress testing framework. The current model setup includes 

contemporaneous macro variables along with 3 year lags. The intuition for this approach is to 

build models for scenario prediction which is the main methodology for Stress Testing 

modelling. The macro variables included in the development are:  

 GDP: Gross Domestic Product growth 

 EXPORT: US Total Exports growth 

 GOVCREDIT: Government Credit to GDP 

 DEBT: US public debt to GDP 

 GOVEXP: US government expenditure to GDP 

 INFLAT: US inflation 

 RRE: House Price Index growth 

 UNR: Unemployment Rate 

 YIELD10Y: 10Y US sovereign bonds yields 

 STOCKS: US Stock index – S&P 500 returns 

 

The relevant stress financial variables for simulating the profitability and the risk weighted 

assets of each financial institution are:  

 

 NLOAN: Net loans exposure 

 DEP: Total Deposits 

 DDEP: Total domestic deposits  

 ASSET: Average Total Assets 

 EASSET: Average Total Earning Assets 

 EQUITY: Average Total Equity 

 LOAN: Average total loans  
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 CFD: Deposits Cost of funding  

 YEA: Yield on earning assets 

 NFIA: Noninterest income to average assets 

 RW: Risk Weight Density  

 LOSS_LOAN: Loss allowance to loans 

 RWA: Total risk weighted assets 

 CAR%: Total risk based capital ratio 

Modelling for the evolution of the balance sheet is performed on the growth rate of four key 

financial items: Deposits, Total Earning Assets, Total Loans and Total Assets.  

In order to capture the idiosyncratic characteristics of each financial entity, 3 year lags are 

included in the training process for each financial variable. In the final model setup the use of 

multiple years financial and macroeconomic variables allows for capturing internal trends of key 

items of a bank’ balance sheet and also the degree each entity is affected by the status of US 

economy. 

4. Model Development 

The success of the stress testing exercises performed in the past by regulatory authorities 

was put under scrutiny by all market participants and the research community. In order to 

investigate the capabilities of the proposed DeepStress approach for stress testing against 

broadly used technical frameworks we simulate two additional methods for balance sheet 

forecasting to benchmark its performance. Specifically we developed a constant balance sheet 

approach following the framework adapted by EBA to perform EU wide stress tests [4] and a 

dynamic balance sheet approach support by a group of satellite models to forecast individual 

financial variables used by other regulatory authorities like ECB for macro prudential stress 

testing. In this section we provide an overview of the overall setup of the study and technical 

details of the three individual approaches employed.  

General Setup of the Study 

The main component of a micro prudential solvency stress testing framework is the 

projection of a financial institution capital adequacy ratio or recently the CET 1 ratio (Core Equity 

Tier I ratio). In this study we develop a Deep Neural Network structure which receives as input 

the Macro variables and Balance sheet components mentioned in chapter 3 and provides as 

output the balance sheet and profitability structure of the bank on one year horizon as 

measured by 9 core variables namely Net loans, Deposits, Assets, Earning Assets, Deposits, Cost 

of funding, Yield on earning assets, Noninterest income to assets, Risk Weight Density and Cost 

of Risk {Loss allowance to loans) 

 

 

Figure 3: Stress Test Deep Neural Network  

 

 Macro and Financial Metrics Balance Sheet and 

Profitability Projection 



A new approach for dynamic balance sheet stress testing utilizing deep learning algorithms 9 

 

 

Figure 3: Stress Test Deep Neural Network architecture 

 

 

We focus on the forecasting of the CAR ratio since CET-1 ratio was introduced under Basel 

III and is not available throughout our dataset. Specifically, our aim is to project the in a one-

year-ahead the CAR ratio of each financial institution in the sample. CAR ratio by definition is 

the ratio of a bank’s capital over the risk weighted assets in each time point t. In order to 

simulate the core mechanics of a stress testing framework we simulate the evolution of the key 

financial variables of a financial institutions balance sheet. The main setup is that we project one 

year ahead the evolution of the capital and the risk weighted assets in order to forecast the one 

year ahead CAR. The approach followed to adjust the capital in time t is given by the formula:  

Capitalt = Earnings from Assetst – loans loss provisionst + Net fees and commissionst – 

cost of funding from depositst+ Capitalt-1  

(1) 

In order to adjust the capital of each entity we model 8 key financial variables. The first four 

variables refer to the dynamic evolution of the balance sheet i.e the growth of the asset and 

liability side: the growth rate of Deposits, Total loans, Total Assets, Total Earning Assets. The 

remaining 4 variables refer to the yield in the next year of each item from the asset or liability 

side: cost of risk of loans, yield on earning assets, yield on deposits and yield of net fees and 

commissions of total assets.   

The RWA are adjusted in 3 different ways depending on the ST methodology. Specifically 

in terms of the deep learning technique we project the growth of the RWA, for satellite 

modelling a dedicated model is trained to project the RW density of each financial institution 

in the sample, while for the constant balance sheet approach we assume RWA remain constant 

for one year. 

Before developing the relevant statistical models we remove and linearly interpolate the 

outliers utilizing the R package DescTools1. The algorithm is encompassed in the Winsorize 

                                                           
1 https://cran.r-project.org/web/packages/DescTools/index.html 
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function in R, and attempts to clean the data by means of winsorization, i.e., by shrinking 

outlying observations to the border of the main part of the data. 

 

Deep Learning MXNET  

We implement a Deep Neural Network (henceforth DNN) to address the issue of dynamic 

balance sheet forecasting. Deep learning has been an active field of research in the recent years, 

as it has achieved significant breakthroughs in the fields of computer vision and language 

understanding. In particular it has been extremely successful in as diverse time-series modelling 

tasks as machine translation [21, 22] machine summarization and recommendation engines 

[23]. However, its application in the field of finance is rather limited. Specifically, our paper 

constitutes one of the first works presented in the literature that considers application of deep 

learning to address the challenging financial modelling task of financial balance sheet stress 

testing. 

Deep Neural Networks differ from Shallow Neural Networks (one layer) on the multiple 

internal layers employed between the input values and the predicted result (Figure 2). 

Constructing a DNN without nonlinear activation functions is impossible, as without these the 

deep architecture collapses to an equivalent shallow one. Typical choices are logistic sigmoid, 

hyperbolic tangent and rectified linear unit (ReLU). The logistic sigmoid and hyperbolic tangent 

activation functions are closely related; both belong to the sigmoid family. A disadvantage of 

the sigmoid activation function is that it should be kept small due to their tendency to saturate 

with large positive or negative values. To alleviate this problem, researchers have derived 

piecewise linear units like the popular ReLU, which are now the standard choice in deep learning 

research ReLU. The activation layers increase the ability and flexibility of a DNN to capture non-

linear relationships in the training dataset. 

On a different perspective, since DNNs comprise a huge number of trainable parameters, 

it is key that appropriate techniques be employed to prevent them from overfitting. Indeed, it 

is now widely understood that one of the main reasons behind the explosive success and 

popularity of DNNs consists in the availability of simple, effective, and efficient regularization 

techniques, developed in the last few years. Dropout has been the first, and, expectably enough, 

the most popular regularization technique for DNNs [24]. In essence, it consists in randomly 

dropping different units of the network on each iteration of the training algorithm. This way, 

only the parameters related to a subset of the network units are trained during each iteration. 

This ameliorates the associated network overfitting tendency, and it does so in a way that 

ensures that all network parameters are effectively trained.  

Inspired from these merits, we employ Dropout DNNs with ReLU activations to train and 

deploy feed forward deep neural networks. We employ the Apache MXNET toolbox of R2 for 

implementing the deep learning algorithm. We postulated deep networks that are up to five 

hidden layers deep and comprise various numbers of neurons. Model selection using cross-

validation was performed by maximizing the RMSE metric on the projected CAR.   

In our setup multivariate deep learning networks will learn the balance sheet of financial 

institutions separately generating yearly forecasts by the interactions of layered neurons after 

receiving historical values of banks previous economic states. This hierarchical transmission of 

observed data between cascading layers of abstraction can decompose the structure of a bank 

balance sheet and foster the multivariate representation of the financial variables for capturing 

the correlations between various assets and liabilities. This provides the functionality of 

simultaneously modelling the balance sheet as a whole instead of using satellite models of 

                                                           
2 https://mxnet.incubator.apache.org/api/r/index.htm 
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regular stress testing frameworks. This is feasible based on the fact that DNN are composed of 

multiple features for input and output complex representations. Deep learning can facilitate the 

dynamic balance sheet projection approach through the non-linear relationships 

representations of each layer offering a more realistic approach for stress testing. Information 

flows through the system as a vector of macro and financial variables describing the state of 

both the bank and the macro economy at any time stamp during the forecast period. Specifically 

the input vector contains around 60 variables and the output vector is composed of 9 variables.  

The DNN architecture employed is capable of modelling the lead lag relationships between 

macro variables banks variables financial variables and sovereign variables. Finally in the 

DeepStress engine using the aforementioned multivariate forecasting setup on individual 

balance sheet we model simultaneously the RWA evolution of the bank and connect it to the 

macro environment.  

 

Satellite Modelling – Bayesian Model Averaging  

Satellite models are used for univariate estimations of the impacts of standalone balance 

sheet items in current stress testing frameworks [2]. A usual statistical technique employed by 

regulators and the banking industry is the Bayesian Model averaging.  The main intuition behind 

the use of BMA econometric technique is to account for the uncertainty surrounding the main 

determinants of risk dynamics especially in a period of recession. This approach is able to handle 

a short time series of balance sheet realizations which is usually the case for stress testing. Thus 

BMA offers the possibility to perform multivariate modelling including all potential predictors 

with different weight while the output of each trained model remains univariate.  

Using BMA, a pool of equations is generated using a random selection subgroup of 

determinants. Subsequently a weight is assigned to each model that reflects their relative 

forecasting performance. Aggregating all equations using the corresponding weights produces 

a posterior model probability. The number of equations estimated in the first step is large 

enough to capture all possible combinations of a predetermined number of independent 

variables. Thus Bayesian model averaging addresses model uncertainty and misspecification in 

selected explanatory variables in a simple linear regression problem. 

To further illustrate BMA, suppose a linear model structure, with 𝑌𝑡 being the dependent 

variable, 𝑋 the explanatory variables, α constant, β the coefficients and 𝜀𝑡   a normal error term 

with variance σ. 

 

𝑌𝑡 = 𝛼𝛾 + 𝛽𝛾𝛸𝛾,𝑡  + 𝜀𝑡   (2)  𝜀𝑡  ~𝛮(0, 𝜎2𝛪)  (2) 

 

A problem arises when there are many potential explanatory variables in a matrix 𝛸𝑡   which 

transforms the task of selecting the correct combination quite burdensome.  The direct 

approach to inference in a single linear model that includes all variables is inefficient or even 

infeasible with a limited number of observations. It can lead to overfitting, multicollinearity and 

increased manual re-estimations to account for non-significant determinants. BMA tackles the 

problem by estimating models for all possible combinations of { Χ} and constructing a weighted 

average over all of them. 

Under the assumption that Χ contains K potential explanatory variables, BMA estimates 2K 

combinations and thus 2K models. Applying Bayes’ theorem (6), model averaging is based on 

the posterior model probabilities. 

𝑝(𝑀𝛾|𝑌, 𝑋) =
𝑝(𝑌|𝑀𝛾,𝑋)𝑝(𝑀𝛾)

𝑝(𝑌|𝑋)
=

𝑝(𝑌|𝑀𝛾,𝑋)𝑝(𝑀𝛾)

∑ 𝑝(𝑌|𝑀𝑠,𝑋)𝑝(𝑀𝑠)2𝐾
𝑠=1

   (3) 
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In equation (3), 𝑝(𝑌, 𝑋) denotes the integrated likelihood which is constant over all models 

and is thus simply a multiplicative term. Therefore, the posterior model probability (PMP) is 

proportional to the integrated likelihood 𝑝(𝑌|𝑀, 𝑋) which reflects the probability of the data 

given model 𝑀. Thus the corresponding weight assigned to each model is measured 

using 𝑝(𝑀𝛾|𝑌, 𝑋) in equation (3). 

In equation (3), 𝑝(𝑀) denotes the prior belief of how probable model 𝑀 is before analyzing 

the data. Furthermore, to estimate  𝑝(𝑌, 𝑋)  integration is performed across all models in the 

model space and to estimate the probability 𝑝(𝑌|𝑀, 𝑋) integration is performed given model 

M across all parameter space. By performing renormalization of the product in equation (3), 

PMPs can be inferred and subsequently the model’s weighted posterior distribution for 

estimator β is given by 

𝑝(𝛽|𝑌, 𝑋) = ∑ 𝑝(𝛽|𝑀𝛾 , 𝑌, 𝑋)𝑝(𝑀𝛾|𝑋, 𝑌)2𝐾

𝛾=1 (4) 

The priors, posteriors and the marginal likelihood employed in the estimation are described 

analytically in Appendix. 

For model development, the same train set used for DNN is employed. Before applying the 

Bayesian Averaging algorithm we remove and linearly interpolate the outliers. In Bayesian 

Model Averaging estimation we employ unit information prior (UIP), which sets g=N commonly 

for all models. We use also a birth/death MCMC algorithm (20000 draws) due to the large 

number of covariates included since using the entire model space would lead to a large number 

of iterations. We fix the number of burn-in draws for the MCMC sampler to 10000. Finally the 

models prior employed is the ’random theta’ prior by Ley and Steel [25], who suggest a 

binomial-beta hyper prior on the a priori inclusion probability. This has the advantage that is 

less tight around prior expected model size (i.e. the average number of included regressors) so 

it reflects prior uncertainty about model size more efficiently. For robustness purposes we varied 

the used prior employing the Fernandez [26] propositions but the results were not substantially 

different. 

In order to develop all the satellite models for this approach we employ the utilities of BMS 

R package3. After the training process 9 BMS models are developed: 4 for the growth of balance 

sheet items, 4 models are forecasting the yields of a various assets and liabilities and one model 

for forecasting the RW assets density.  

 

Constant Balance sheet modelling setup 
For the constant balance all balance sheet items are assumed constant along with the RWA 

metric for one year. Thus we combine the respective univariate satellite models BMA to project 

yields of assets and liabilities while assume zero growth in the balance sheet in order to project 

the CAR ratio one year ahead.  

5. Model Validation - Experimental Evaluation 

No thorough and consistent framework exists for validating the results of a stress testing 

exercise since the adverse scenario used in their design never materialize. Back testing methods 

is an important process to recognize modelling inefficiencies and fine tune the estimations 

taking into account specificities in the time series data that were not capture in the initial 

calibration and development phase. Thus in order to improve the quality of stress testing 

                                                           
3 https://cran.r-project.org/web/packages/BMS/index.html 
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rigorous validation procedures of actual vs predicted financial variables are important to be 

introduced [35]. Furthermore, according to previous studies the success of the stress testing 

exercises after the financial crises maybe be circumstantial [34] since no robust methods are 

applied to quantify their estimation error.  

Following a different venue in this study we perform a thorough validation procedure in 

order to assess the robustness of our approach. In this section we summarize the results of the 

three approaches. More precisely, we report the performance results obtained from the 

experimental evaluation of our method, in terms of in-sample fit (train dataset) and out-of-time 

performance (test sample). Finally we report in terms of evaluating the model’s predictive ability 

separately on the 2011 year to investigate the models behaviour during the European Sovereign 

crises. To sum up, after developing our Stress testing frameworks in the “train” dataset, we 

assess their performance results under three different time period samples. The first, being the 

“in sample”, is used to in sample error of the each approach for evaluating overfitting. The 

second is the time period sample of 2011 which is included in the train dataset but is separately 

reported to investigate the performance of each model during a period of financial turbulence. 

While, under the third “Out-of-time” dataset the performance of each model is evaluated during 

a future time period for evaluating their generalization capacity. More precisely, we report 

performance results obtained by evaluating our method over a two year (8 quarters) out of 

sample time-period comprising, spanning from 2014 – 2015. Validation is performed with 

respect to the one year ahead forecast of the CAR ratio. Note that the last 2 two years of the 

dataset were not used for model development. 

Prediction accuracy of the CAR ratio, as measured by the deviation between the forecast 

of each framework against the actual CAR ratio of each financial institution, is the main criterion 

to assess the efficacy of each method and to select the most robust one. In this section, we 

present a series of metrics that are broadly used for quantitatively estimating the forecasting 

accuracy on continuous outcomes. We evaluate the stress testing methods with the usual 

forecast metrics of Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and the Mean 

Absolute Percentage Error (MAPE). These metrics are used so as to derive a full-spectrum 

conclusion regarding the relative forecasting power of each framework.  

As we observe in Table 2, in the out of sample horizon the MXNET algorithm provides the 

best empirical performance. This is followed by the dynamic balance approach utilizing 

standalone satellite models methodology. Hence, MXNET deep neural networks offer 

significantly superior predictive accuracy under the CAR ratio forecasting setup on the test 

sample. Another remark based on the experimental results is that, by moving from simple neural 

networks to deep networks, we are able to infer richer and subtler dynamics from the data, thus 

increasing our capacity in modelling nonlinearities and cross-correlations among balance sheet 

P&L items.  Deep learning offers a more efficient way to simulate the CAR ratio under a specific 

set of macro scenarios of key macroeconomic variables. This is also evident from the graph 

below where in the out of sample performance constant balance sheet and satellite modelling 

diverge significantly from the actual evolution of the CAR ratio in the dataset. In addition the 

two benchmark approaches exhibit higher volatility in their forecast based on the figure 4.  The 

same holds also in figure 5 where the projected CAR is graphed only for large banks (more 

200bl in assets).  
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Figure 4: Out of sample back testing results of CAR ratio of the three balance sheet approaches (Whole 

Sample)  

 

Figure 5: Out of sample back testing results of CAR ratio of the three balance sheet approaches (Large Banks 

in the out of Sample)  

 

Figure 6: Out of sample back testing results of the Capital  of the three balance sheet approaches compared 

with the actual figures (Whole Sample)  
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Figure 7: Out of sample back testing results of the RMSE of CAR by quarter of the three balance sheet 

approaches compared with the actual figures (Whole Sample)  

 

All banks in the dataset Out of Sample CAR In Sample CAR 

Satelite Modelling(BMA) 20.61 17.07 

Deep Learning (MXNET) 18.01 17.89 

Constant Balance Sheet 20.03 17.49 

Actual 19.33 18.73 
   

Large Banks (>200bl) Out of Sample CAR In Sample CAR 

Satelite Modelling(BMS) 15.07 11.04 

Deep Learning (MXNET) 12.77 11.12 

Constant Balance Sheet 15.11 11.48 

Actual 13.75 14.16 

 

Table 1: Comparison of the predicted one year ahead CAR by ST approach for all banks and only for Large 

financial institutions (more than 200billions in assets) 

Table 1 summarizes the results of all aforementioned samples with respect the CAR ratio 

and the prediction error validation metrics (RMSE, MAE, MAPE). Based on the figures reported 

in the test sample MXNET provide more accurate estimation of the CAR ratio exhibiting a 

significant decrease in the forecasting error.  Figure 7 provides a more detail evolution of the 

RMSE in the out of time dataset for the three approaches. The volatility and instability in the 

forecasts of the satellite modelling and the constant balance sheet approach are evident against 

the MXNET performance. To investigate further the superior performance of DeepStress we 

have graphed the evolution of the P&L against the other two approaches in figure 6. 

 

All Banks (Assets Weighted) Out of Sample (2014Q1 - 2015Q4) 

  RMSE MAPE MAE 
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Satelite Modelling(BMS)                      8.28  15.15%                   2.88  

Deep Learning (MXNET)                      7.23  11.93%                   2.36  

Constant Balance Sheet                      7.88  15.25%                   2.85  

  In sample (2011Q1 - 2011Q4) 

   RMSE   MAPE   MAE  

Satelite Modelling(BMS)                      9.10  17.86%                   2.63  

Deep Learning (MXNET)                      7.70  16.66%                   2.55  

Constant Balance Sheet                   16.44  18.39%                   2.79  

   In sample (2010Q1 - 2013Q4)  

   RMSE   MAPE   MAE  

Satelite Modelling(BMS)                      9.16  15.79%                   2.58  

Deep Learning (MXNET)                      9.70  15.00%                   2.55  

Constant Balance Sheet                   11.15  15.40%                   2.55  

 

Table 2: Validation Measures – CAR for all financial institutions in the dataset 

To further investigate the performance of Deep Stress approach we narrow down the 

results on a subset of large financial institutions where performance of a robust stress testing 

methodology is more important due to their size and social-economic impact. Big financial 

institutions are defined as entities with more than 200 billion in assets for the purpose of this 

study. Table 3 outlines the experimental results on all datasets. Additionally, in this group of 

financial institutions the superiority of deep neural network is confirmed with significant drops 

in the forecasting error in the test sample.  Another worth mentioning results is the fact that 

although satellite univariate modelling in the sample dataset was expected to provide a better 

fitting against the DNN this is not the case. DNN is trained in a multivariate setup attempting 

to model 9 variables at the same time and still exhibits a rather comparable in sample error 

against the other two methods.  

 

Large Banks (>200bl in 

assets) 

Out of Sample (2014Q1 - 2015Q4) 

  RMSE MAPE MAE 

Satelite Modelling(BMS)                   3.04  17.05%           2.31  

Deep Learning (MXNET)                   2.23  14.66%           1.97  

Constant Balance Sheet                   3.25  19.05%           2.58  

  In sample (2011Q1 - 2011Q4) 

  RMSE MAPE MAE 

Satelite Modelling(BMS)                   3.75  25.67%           3.59  

Deep Learning (MXNET)                   3.72  25.16%           3.52  

Constant Balance Sheet                   3.61  24.24%           3.41  

  In sample (2010Q1 - 2013Q4) 

  RMSE MAPE MAE 

Satelite Modelling(BMS)                   3.48  23.39%           3.24  

Deep Learning (MXNET)                   3.50  23.25%           3.23  

Constant Balance Sheet                   3.28  22.19%           3.09  

 

Table 3: Validation Measures – CAR only for large institutions in the dataset (more 200billinos in Assets) 
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Summarizing the results across all metrics in the test sample, it is evident that the MXNET 

system exhibits higher predicting power compared to all the considered benchmark 

approaches. Among the other two approaches it is evident that the constant balance 

assumption although easier to implement exhibits the highest error. Hence, it is crucial for 

supervisory authorities to rethink current stress testing exercise that are based on the constant 

balance sheet assumption and move towards a dynamic balance sheet approach. .  

6. Conclusions and future work  

In this study we propose a new approach to be utilized in regulatory stress testing exercises 

called Deep Stress leveraging on the properties of deep learning. The main novel contribution 

of this empirical research to the literature of forecasting economic and financial crisis events is 

that we explore this new statistical technique to tackle the problem of dynamic balance stress 

testing. Deep learning is utilized to provide a holistic modelling approach for a bank’s key 

financial items. We perform thorough testing and validation of the proposed technique. 

Experimental results provide strong evidence to further be explored in the future by regulators 

and financial institutions in order to produce a new generation of stress testing. Deep stress is 

compared with two broadly accepted stress testing frameworks: constant balance sheet and 

satellite dynamic modelling.  

Summarizing our experimental results, we have found that Deep Neural Networks built 

using the MXNET library consistently outperform the benchmark approaches. Our results 

provide strong evidence of increased forecasting accuracy with respect to the CAR ratio and 

performance consistency, which implies a much stronger generalization capacity compared to 

alternative benchmark frameworks. Specifically, Deep stress is compared with two broadly 

accepted stress testing frameworks: constant balance sheet and satellite dynamic modelling. 

Validation measures RMSE, MAE and MAPE significantly decrease in the test sample using 

DeepStress providing better simulation of the CAR ratio. Hence, these findings render our 

approach much more attractive to researchers and practitioners working in real-world financial 

institutions. The main driver for achieving this higher forecasting accuracy is the potential to 

model the balance sheet inter-correlation of P&L items providing better simulation of the banks 

one-year-ahead activities. Deep Stress offers a better dynamic balance sheet simulator which is 

a major component in any stress testing framework by better capturing that small macro and 

financial changes that can be amplified exponentially under a crisis event. The dynamic nature 

of our framework leads to significant decrease in the forecasting error by modelling better the 

feedback loops and the interdependence of various items of a financial institution balance sheet 

with the macro economy.  

The aforementioned cascading layers structure of deep learning algorithms will open up 

new horizons for financial system simulation combining brain inspired computation and 

statistical machine learning. However, our initial endeavour is concentrated on the banking 

system which the backbone of the global economy but is scalable to other entities such as large 

corporate, insurances and shadow banking. The system can be used by policy makers to test 

various measures and to monitor the system in a forward looking manner and increase 

awareness for possible future financial shocks. DeepStress can finally be used to measure the 

social impact of a possible financial or systemic shock through the adjusted projections of 

various key macro variables like unemployment, wealth, credit expansion etc.  

An aspect this work has not considered concerns developing deep learning models that 

can be continuously retrained in a moving window (online learning) setup. Another possible 
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way forward is the exploration of deep neural networks under broader dataset referring to 

multiple jurisdictions. Finally, it is evident that the postulated Deep Learning networks can 

effectively capture nonlinearities in the relationship between the input variable and the output 

variable. Although, the validation framework implemented in this study, cannot fully capture 

the estimation error in a Stress testing exercise due to the fact the dataset does not include 

crisis years. The results though provide evidence for the forecasting efficacy of DeepStress for 

several years simulating a baseline scenario of a Stress Testing exercise. To enhance the 

validation framework of our approach we will intensify the data collection process to gather 

information referring to several years before the financial crises in order to use DeepStress to 

simulate and predict failed entities that took place during this period.  The value of such novel 

developments remains to be examined in our future research endeavours. 
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Appendix: Prior selection in  BMA models 
 

It is a popular choice to set a uniform prior probability for each model to represent the lack 

of prior knowledge. It is often the case in BMA to assume no prior knowledge for each model 

and assign a uniform prior probability i.e. p(Mγ) ∝ 1. Regarding the marginal likelihoods 

p(Mγ|Y, X) and the posterior distributions p(β|Mγ, Y, X) the literature standard is to use a specific 

prior structure called Zellner’s g prior in order to estimate posterior distributions in an efficient 

mathematical way. In this setup the prior knowledge for the coefficients is assumed to be a 

normal distribution with pre-specified mean and variance. Specifically the parametric 

formulation is given by (8).  

βγ|g~N (0, σ2 (
1

g
Χγ  

′Χγ  )
−1

)   (8) 

According to (8) coefficients are assumed to have zero mean and a variance-covariance 

structure which is broadly in line with that of the data Χγ  . The hyper-parameter g denotes the 

prior level of confidence that the coefficients are zero. The posterior distribution of the 

coefficients follows a t-distribution with expected value 
g

1+g
βγ̂ where βγ̂  is the standard OLS 

estimator for model γ. Thus as g → ∞ the coefficient estimator approaches the OLS estimator. 

Similarly, the posterior variance of βγ  is affected by the value of g (9). 

Cov(bγ|Y, X, g, Mγ) =
(Y−Y̅)′(Y−Y)

N−3

g

1+g
(1 −

g

1+g
Rγ

2) (Χγ  
′Χγ  )

−1
 (9) 

 

Τhe posterior covariance is similar to that of the OLS estimator, times a factor that includes 

g and Rγ
2  .(OLS R squared for model γ). For BMA, this prior framework results in α marginal 

likelihood which includes a size penalty factor adjusting for model size kγ given by  

p(Y|Mγ, X, g) ∝ (Y − yY̅̅ ̅)′(Y − Yy̅̅ ̅)−
N−1

2 (1 + g)−−
kγ

2 (1 −
g

1+g
)

−
N−1

2
 (10) 

 

The. “default” approach for hyper-parameter g is the “unit information prior” (UIP), which 

sets g = N for all models. 

 


