Discussion of

"The effects of bank capital buffers on bank lending and firm activity: what can we learn from five years of stress-test results?" By Jose M. Berrospide and Roehelle M. Edge

> Mitsuru Katagiri Bank of Japan

2019 EBA Policy Research Workshop (27-28 November 2019)

Main questions in this paper

- * Does the capital buffer required in Federal Reserve's CCAR affect banks' loan supply?
- * If yes, does it affect non-financial firms' total debt, investment, and employment?
- * Can we use the estimation result for assessing the policy effects of CCyB?

Backgrounds

- * The regulatory capital reform after the GFC has (probably) contributed to enhancing resilience of banking sector...
- * ... but, the adverse effects of the reform on loans supply and economic activity is still an open question.
- * The CCAR capital buffer is the most binding capital standard for large US banks from 2012 to 2016.
 - The paper focuses on the periods until 2016 to avoid the effects of Basel III capital buffers

Identification issue

- * An analysis on the relationship between bank capital and loan supply always faces an <u>identification issue</u>.
- * Imagine that we estimate β by bank-level data:

Loan growth = $\alpha + \beta$ ST Capital buffer + ϵ

- Does statistically significant β<0 implies that higher ST capital buffer constrains loan supply? "No."
- * Another interpretation: "Banks which need to have more capital buffers have borrowers whose loan demand is low."

Empirical Approach (1)

- The paper uses bank-firm level data for C&I loan volume in the quarterly regulatory report (FR Y-14)
- * The bank-firm matched data between a specific bank and a specific firm can overcome the identification issue.

Loan growth (bank X to firm A) = $\alpha_A + \beta$ ST Capital buffer_X + ϵ Loan growth (bank Y to firm A) = $\alpha_A + \beta$ ST Capital buffer_Y + ϵ

* Since the fixed effect α_A absorbs the loan demand effects, β is the effects of the ST capital buffer on loan supply.

Empirical Approach (2)

* The impact of capital buffers on firm outcome:

Firm outcome = $\alpha + \beta$ Firm ST buffer exposure + ϵ

- * "Firm ST buffer exposure" is the average ST capital buffers weighted by loan volume from each bank.
- "Firm outcome" includes total debt, investment spending, and employment
 - The effects on employment is assessed by county level data due to the data limitation.

Main results

- * Larger ST buffers reduce bank C&I lending...
 - 1 %pt increase in ST buffers decreases the growth rate of utilized loans by 2%pt and committed loans by 1.5 %pt
- * ... but, they have **no** adverse effects on firms' total debt growth, investment spending and employment.
- * The tighter capital requirement does not negatively affect real economy thanks to substitution of funding sources.

Comment 1: Do the firm–level results depend on firm characteristics?

- * The paper examine only the difference between private and public firms...
- * ... but, the results may depend on other firm characteristics such as size, leverage ratios, profitability, etc.
- * <u>How about splitting the sample (e.g., small firms vs. large</u> <u>firms) to examine the difference in firm characteristics?</u>
- * E.g., Small firms may be more difficult to find another funding sources due to the limited access to capital markets

Comment 2: Is there non-linearity in the effects of ST buffers?

- The paper assumes the effects of ST buffers are linear and independent of capita ratios
- But, banks with lower capita ratios are probably more concerned about ST buffers
- * If we ignore such possibility of non-linearity, we may have imprecise policy implications

Comment 2: Is there non-linearity in the effects of ST buffers?

* To capture the non-linearity, <u>how about incorporating</u> <u>the interaction term with capita ratios?</u> That is,

Loan growth = $\alpha + \beta$ ST Capital buffer

+ γ Capital ratios · ST Capital buffer + ϵ

- * Now, the marginal effect of ST capital buffers on loan growth is " β + γ Capital ratios"
- * It is expected to have γ < 0</p>

Comment 3: Why does the firm-level analysis focus on multibank firms?

- * On Page 11, "We look only at multibank firms; that is, firms that borrow from at least 2 banks, with at least one bank in the low-capital decline group and the other on in the high-capital decline group."
- * Why is it necessary to look only at multibank firms in the firm-level analysis? Any identification issues here?

Concluding remarks

- * This is a great empirical paper on the cost of regulatory reforms in the US:
 - Clear empirical strategy to overcome the identification issue
 - Interesting policy implications
- Maybe, the authors can do more analyses to deepen our understandings about the effects of ST capital buffers by firm characteristics and the non-linearity.