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Abstract 

 

Proactively monitoring and assessing the economic health of financial institutions has always 

been the cornerstone of supervisory authorities for supporting informed and timely decision 

making. In discriminating the riskiness of banks and predict possible bank insolvencies, 

supervisory authorities make use of various statistical methods along with expert judgment. 

In this work, we employ a series of modeling techniques to predict bank insolvencies on a 

sample of US based financial institutions. Our empirical results indicate that the method of 

Random Forests (RF) has a superior out of sample and out of time predictive performance 

not only compared to broadly used bank failure models, such as Logistic Regression and 

Linear Discriminant Analysis, but also over other advanced machine learning techniques 

(Support Vector Machines, Neural Networks, Random Forest of Conditional Inference Trees). 

Furthermore, our results illustrate that in the CAMELS evaluation framework, metrics related 

to earnings and capital constitute the factors with the higher marginal contribution to the 

prediction of bank failures. Finally, we assess the generalization of our model by providing a 

case study to a sample of major European banks, while we also benchmark our results 

relative to Moody’s rating scale. In a sense, we build an Early Warning System based 

classification for bank insolvencies in Europe. Our model could be used as an integrated part 

of the Supervisory Review and Evaluation Process (SREP) in assessing the resilience of 

financial institutions. This enhanced framework would steer decision making, via triggering 

the imposition of any necessary targeted corrective actions, leading vulnerable institutions 

back to sustainable and viable business performance.   
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1. Introduction – Motivation 

Supervisory authorities are primarily concerned with protecting depositors’ interests, via 

ensuring that financial institutions are able to survive under business as usual conditions and 

sufficiently immune to any adverse market shocks. Hence, the comprehensive assessment of 

the current financial conditions of a bank as well as the evaluation of its future sustainability 

is the cornerstone of proactive banking supervision. To distinguish between strong and weak 

banks, supervisory authorities make use of early warning expert systems or/and statistical 

modeling techniques. The outcome of this analysis can drive the imposition of targeted 

regulatory measures. These measures can take the form of preemptive corrective actions 

addressing vulnerabilities of weaker banks and as a result increase their chances for 

sustainability. While, in specific cases of failing banks whose return to viability is considered 

irreversible, it will provide the necessary evidence to the supervisory and resolution 

authorities in order to arrange their orderly resolution. Essentially, supervisory actions serve 

in retaining depositors’ confidence to the financial system, so that any domino effects that 

can even trigger a potential systemic crisis are precluded.  

Between 1934 and 2014 there were 4069 banks in the United States that failed or received 

financial assistance from FDIC. More precisely 3483 banks failed or were assisted by the 

Central Bank from 1980 to 2014 following the deregulation of the US banking system in 

1980’s, notwithstanding the considerable efforts made by supervisory authorities in 

identifying vulnerable financial institutions, according to the FDIC records. 

Based on these statistics, it is evident that the preemptive identification of insolvent banks 

was not so effective and that supervisory authorities should further strengthen the 

monitoring processes of the banking system. As a response to the global financial crisis, 

which led to numerous defaults of credit institutions, the Basel Committee on Banking 

Supervision (BCBS) has introduced an updated set of regulations, known as the Basel III 

accord2 to further improve the quality and effectiveness of banking supervision. However, it 

seems that the compliance with an even more extended set of minimum regulatory 

standards or/and the close monitoring by supervisory authorities of the evolution of a bank’s 

risk indicators, should not be assessed on a standalone basis. It is essential that all risk 

drivers and relevant information should be combined into a single measure, representing 

each bank’s financial strength. Reflecting in a single and easy score a bank’s overall risk could 

prove to be a difficult task due to the big bulk of information that is currently collected by 

supervisory authorities. In the absence of strong analytical and data filtering tools this 

oversupply of information could even mislead regulators during the decision making 

process. Hence, supervisory authorities should utilize robust aggregation methodologies, 

which could result in the efficient calculation of a survival probability for each financial 

institution as well as its classification into different riskiness classes.  

In the last decades various statistical methodologies have been exploited to aggregate bank 

specific information into a single figure in order to distinguish between solvent and insolvent 

                                                           
2
 The new proposals address risks not covered in the existing regulatory framework, by introducing 

stricter criteria for the quality of capital, a binding leverage ratio as well as two indicators to capture 
liquidity risk. 
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financial institutions. These methods range from simple Discriminant analysis (Altman 1968, 

Kočišová and Mišanková 2014, Cox 2014) and Logit/Probit regressions (Ohlson 1980, Cole 

and Wu 2014), to advanced machine learning techniques, such as Support Vector Machines 

(Boyacioglu et al 2008, Chen and Shih 2006), conditional inference trees and Neural 

Networks (Messai and Gallali 2015, Ravi and Pramodh 2008). However, no academic study 

exists that thoroughly assesses simultaneously all of the above mentioned methodologies on 

a common dataset, in order to determine in a concrete way their relative forecasting 

performance.  

At the same time, other novel modeling approaches such as Random Forests (RF) (Breiman 

2000) have not been employed up to now in the problem of assessing bank failures. Random 

Forests (RF) are supported by an efficient calculation algorithm making it a useful framework 

for analysis of big datasets and handling a large number of input variables without any 

correlation restrictions. RF except from providing consistency in estimation and an unbiased 

estimate of the generalization error as the number of trees increases, are also efficient in 

modeling outliers due to the random subspaces process and their ability to recognize non-

linear relationships. Therefore, RF has turned out to be a popular method for modeling 

classification problems in recent years.  

In this work, addressing the aforementioned gap in the current literature, we employ a 

series of performance statistics to assess the explanatory power of six modeling techniques 

in predicting bank insolvencies, including Logistic Regression, Linear Discriminant analysis, 

Random Forests, Support Vector Machines, Neural Networks and Random Forests of 

Conditional Inference Trees. The model evaluation measures utilized in this analysis are 

tailored to assess model performance on imbalanced samples, like all datasets used in 

related studies to ours. Model performance is assessed based on in-sample, out-of-sample 

and out-of-time scenarios. We deem that our comprehensive analysis, which is coupled with 

an extended and robust validation process across all developed models, provides significant 

findings regarding the selection of the “optimal” method for identifying bank failures. 

Another critical component in predicting bank insolvencies, apart from selecting the 

appropriate modeling technique, is the universe of explanatory variables to be analyzed. 

Although a series of studies employs macroeconomic determinants to develop early warning 

systems for bank failures (Mayes and Stremmel 2014, Cole and White 2012, Betz 2014), 

recent empirical evidence suggests that the financial condition of individual banks is a key 

driver in distinguishing their performance during the recent financial crisis (Berger & 

Bouwman 2013, Vazquez & Federico 2015). Moreover, supervisory authorities are interested 

in the bank-specific weaknesses that may drive banks to insolvency, so that they are able to 

address them via the specification of targeted remedial actions in each particular case. In 

this study, following the same philosophy, we use an extended dataset of bank specific 

variables to differentiate between failing and non-failing financial institutions. Specifically, 

we test the explanatory power of more than 40 variables that can be broadly classified 

under the categories prescribed by CAMELS (Messai and Gallali 2015, Cole and Wu 2014), 

along with their lags up to 8 quarters and their transformed changes in various time 

intervals, amounting to a total number of 660 covariates examined. In short, the high 

number of independent variables investigated along with the state of the art methods used 
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for variable selection and model setup, ensure that the bulk of any available bank specific 

information is considered under the problem of distinguishing between solvent and 

insolvent banks.  

There is a big debate in the current literature regarding the superiority of certain indicators 

in predicting bank failures. Mayes and Stremmel (2014) claim that a simple leverage ratio 

(unweighted) is a better predictor than capital adequacy ratio (risk weighted), while others 

(Cole and Wu 2014) have identified that those related to capital adequacy, liquidity and 

asset quality are the most important predictors of bank failures. In an attempt to offer more 

evidence on this inconclusive aspect in the current literature, we rank the predictors used 

across all the models developed based on their marginal contribution. Our results indicate 

that metrics related to capital and earnings constitute the factors with the highest marginal 

contribution in predicting bank failures. 

The structure of the remaining part of this study is organized as follows. In section 2, we 

focus on the related literature review on bank failure prediction. Section 3 includes a brief 

introduction of random forests along the relevant literature and in Section 4 we describe the 

data collection and processing. In section 5 we provide a concise introduction to Random 

Forests Algorithm focusing on variable selection and tuning of parameters issues and the 

model development process is outlined. In Section 6 we outline the experimental results, 

and provide details regarding the developed alternative models we use to benchmark our 

approach. We also provide a case study by applying our rating system in a sample of 

European banks and benchmark it relative to Moody’s credit ratings. This way, we assess not 

only its applicability but also its generalization capacity. Finally, in the concluding section we 

summarize the performance superiority of the proposed methodology, we identify any 

potential weaknesses and limitations, while we also discuss areas for future research 

extensions.  

 

2. Literature review 

 

There is an extensive literature on the various methods and analyses performed, regarding 

bank default prediction. Demyanyk and Hasan (2009) provide a summary of various papers 

focusing on analyzing, forecasting and providing remedial actions regarding potential 

financial crises or bank defaults. The Appendix 1 of our study contains a complete summary 

of existing literature regarding the problem of forecasting banking failures for reasons of 

completeness. It attempts to outline the statistical techniques along with the employed 

dataset used in existing academic studies that explore this issue.   

A large group of literature related to bank failure prediction focuses on the set of 

supervisory CAMELS indicators. This is the acronym for Capital, Asset Quality, Management, 

Earnings, Liquidity and Sensitivity to market risk indicators which are typically used by 

investors and regulators in order to assess the soundness of a financial institution. Messai 

and Gallali (2015) by applying discriminant analysis, logistic regression and artificial 

intelligence methods along with Cole and Wu (2014) who focused on time-varying hazard 
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models and probit models, supported the view that CAMELS risk ratios are the most relevant 

and significant factors in predicting a bank default. The former pointed also that the neural 

network method performed better compared to the other models. 

Cole and White (2010) examined the defaults of US commercial banks that occurred in 2009 

by examining CAMELS indicators as well as additional portfolio variables, such as real-estate 

loans and mortgages, which proved to be important as early warning indicators. Cox and 

Wang (2014) also focused on CAMELS indicators, while they also incorporated risk factors 

that were overlooked by the literature prior the US financial crisis in 2007-2009. These risk 

factors were related to the bank’s lending activities, trading and market liquidity.  

Mayes and Stremmel (2014) incorporated CAMELS indicators and macroeconomic variables 

in the framework of Logistic Regression and discrete survival time analysis methods. Their 

analysis indicated that the leverage ratio out-performs risk-weighted capital ratios. Betz et al 

(2013) combined CAMELS indicators with country-level data in order to improve the 

performance of the model in terms of Type I error and out-of-sample validation over 

different forecast horizons. 

Poghosyan and Čihák (2009) used CAMELS indicators together with other factors related to 

depositor discipline, contagion effect among banks, macroeconomic environment, banking 

market concentration and the financial market. The results show that indicators related to 

capitalization, asset quality and profitability can effectively identify weak banks  

Altunbas et al (2012) demonstrated that a strong deposit base and diversification of income 

sources were the key characteristics of a business models that typically relate to significantly 

reduced default risk.  Berger and Bouwman (2013) showed that capital (either total equity or 

regulatory capital), had a positive impact on the survival probabilities and market shares of 

small banks, during all time horizons. 

Wanke et al. (2015) showed that, along the typical CAMELS proxies, bank contextual 

information, such as ownership type, country of origin, bank type and operating system 

(Islamic or conventional), also have a significant impact on efficiency. Chiaramonte et al. 

(2015) illustrated that z-score3 is, at least, as effective as CAMELS variables, with the advance 

of being less demanding in terms of data, while it shows an increased efficiency on more 

sophisticated business models 

Halling and Hayden (2006) introduced a two-step survival time procedure that combines a 

multi-period logit model and a survival time model and focused on 50 variables covering 

information regarding bank characteristics, credit risk of the loan book, capital structure, 

profitability, management quality and macroeconomics. Kolari et al. (2002) introduced the 

parametric approach of trait recognition to develop early warning systems and incorporated 

variables related to a number of different bank characteristics, including size, profitability, 

capitalization, credit risk, liquidity, liabilities and diversification. Lall (2014) focused on 

profitability factors during a stress period. Finally, a comparison of artificial intelligence 

methods was introduced in Aykut and Ekinci (2016) 

                                                           
3
 Z-score reflects the number of standard deviations by which returns would have to fall from the 

mean in order to wipe out the bank equity 
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The approach outlined in this paper, offers a significant advantage over most of the existing 

literature, as the assessment of modeling options sufficiently cover most of the available and 

applicable statistical methods in predicting bank distress. Namely, the following models are 

included in our analysis: Logistic Regression (LogR), Linear Discriminant Analysis (LDA), 

Random Forests (RF), Support Vector Machines (SVMs), Neural Networks (NNs) and Random 

Forest of Conditional Inference Trees (CRF). We also utilize a robust assessment 

methodology to evaluate the performance of each model. In doing so, we include out-of-

sample and out-of-time validation samples as well as various discriminatory and accuracy 

tests. Finally, the vast majority of the above mentioned research studies use development 

samples that marginally reach 2010, while we extend our dataset to cover the most recent 

observation (i.e. up to Q4 2014). 

 

3. Random Forests 

Random Forests (RF) is a popular method for modeling classification problems. Since its 

inception (Breiman 2000) RFs has gained significant ground and is frequently used in many 

machine learning applications across various fields of the academic community.  

The main driver for its wide adaptation is the unexcelled accuracy among other machine 

learning algorithms. One of its main features is that it is supported by an efficient calculation 

algorithm offering a useful framework for analysis of big datasets. Based on the structures of 

this method it can handle a large number of input variables without any correlation 

restrictions. In comparison with other machine learning techniques, like Neural Networks or 

SVM, Random Forests provides significant insight regarding variable importance as well as 

important information about the interaction among the input parameters. In addition 

Random Forests can be stored to produce forecasts or new input data and offer information 

about proximities between pairs, which are important for clustering either under a 

supervised or an unsupervised setup. One significant theoretical feature is that this method 

provides consistency in estimation as the number of trees increases (Denil 2013). Its 

attractiveness is increased by its capability to handle missing data or unbalanced data and its 

flexibility to adapt nicely in sparsity. The popularity of RFs stems also from its increased 

efficiency in modeling outliers due to the random subspaces process and its ability to 

recognize non-linear relationships in the dataset analyzed. The efficiency and the flexibility 

embedded in the structure of Random Forests lead to enhanced performance in 

classification problems.  

Several comparative studies in the literature employ various machine learning techniques in 

common samples so as to test the efficacy of each methodology. Caruana and Alexandru 

(2006) have performed a series of experiments on various datasets for the most widely used 

classification techniques (Logistic regression, Neural Networks, Support Vector Machines, 

naive Bayes, Random Forests, KNN, Decision trees, Bagged trees). Random Forests was 

ranked second topping performance against SVM logit and NN. Finally, in a similar study Li et 

al. (2014) provided evidence for high classification accuracy of Random Forests in a common 

dataset under an urban land image classification problem. 
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The method of Random forests has received a lot of traction in classification and regression 

problems in finance during the recent decade. They are widely used in the academic world 

and the finance industry to model time series and to explore recurring patterns for 

improving prediction accuracy. Recently, RFs has been employed in statistical modeling of 

stock market indexes and support decisions for automated trading. Chronologically, Booth et 

al. (2014) employed RFs to build a framework of algorithmic trading. Khaidema et al. (2016) 

investigated forecasting future movements of the stock market prices using RF, while Krauss 

et al. (2016) employed a combination of NN and random forests to explore an arbitrage 

strategy of S&P 500 with promising empirical findings. 

Random Forests has also been utilized in the area of credit risk attempting to model the 

underlying dynamics that drive a company to default on its obligations. Specifically, Yeh et 

al. (2014) combined random forests and rough set theory to address the problem of 

prediction of a firm’s ability to remain a going concern. While, Wu et al. (2016) constructed a 

corporate credit rating prediction model by using RFs to evaluate financial variables. Finally, 

Random Forests can be proven as a really useful regulatory tool for monitoring the stability 

of the financial system. To this end, Alessi and Detken (2014) proposed RFs to form an early 

warning system for macroprudential purposes, by identifying excessive credit growth and 

leverage that could potentially jeopardize the stability of a banking system.  

In this empirical work we investigate the issue of identifying bank insolvencies via developing 

a novel Random Forests based rating system. To this end, we also implement a series of 

other machine learning techniques that are popular in literature, such as neural networks 

and SVM, in order to benchmark our empirical results. Our findings offer a more compact 

picture regarding the efficacy of Random Forests. Essentially, our modeling approach is 

balanced between capturing the determinants that strongly affect the health of a financial 

institution, while at the same time developing an early warning system to predict bank 

failures (i.e. via assessing our result in out-of-sample and out-of-time validation). The 

modeling framework that we implement captures temporal dependencies in a bank’s 

financial indicators. At the same time, it explores up to 2 years of lagged observations, which 

are assumed to carry all the necessary information to describe and predict the financial 

soundness of a bank. 

 

4. Data collection and processing 

In the current study we have collected information on non-failed, failed and assisted entities 

from the database of the Federal Deposit Insurance Corporation (FDIC), an independent 

agency created by the US Congress in order to maintain the stability and the public 

confidence in the financial system. The collected information is related to all US banks, while 

the adopted definition of a default event in this dataset includes all bank failures and 

assistance transactions of all FDIC-insured institutions. Under the proposed framework, each 

entity is categorized either as solvent or as insolvent based on the indicators provided by 

FDIC.  
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The so-obtained dataset was split into three parts (Figure 1). An in-sample dataset (Full in 

sample) that is comprised of the data pertaining to the 80% of the examined companies over 

the observation period 2008-2012 (randomly stratified 4 ) amounting to 101.641 

observations.  An out-of-sample dataset, including the rest 20% of the observations for the 

period 2008-2012 (randomly stratified) amounting to 25.252 observations, and an out-of-

time dataset that spans over the 2013-2014 observation period reaching 48.756 

observations. In all cases, the dependent variable is a binary indicator that takes the value of 

one in case there is a default event, while it takes the value of zero otherwise.  

The model development process was though performed in a shorter dataset named “Short 

in sample”, which is derived from the “Full in sample” by randomly excluding 90% of the 

solvent banks while keeping all the insolvent banks, amounting to 11.573 observations. This 

is done primarily to account for the low number of defaults observed during the in sample 

period. Therefore, we artificially increased the bad to good mix of the dataset used for 

development so as to reach a 10% proportion of insolvent banks. Depending on the model 

type under consideration, we further equally split in certain cases our “Short in sample” 

dataset into a training set and into a validation set. This is especially true for RFs and NN, in 

which the training sample is used to train the candidate model, while the validation set is 

used for selecting the best parameter setup. 

To sum up, after developing our models in the “Short in sample” dataset, we assess their 

performance results under three different validation samples. The first, being the “Full in 

sample”, is used to evaluate the generalization capacity of our models in a population with 

less frequent default events than the ones observed in the development sample (short in-

sample). The second is the “Out-of-sample” that is used to assess the performance of each 

model across banks during the same period. While, under the third “Out-of-time” datasets 

the performance of each model is evaluated during a future time period.  

 

  

                                                           
4
 The number of solvent and insolvent banks is selected in such a way for each quarter so as to retain 

the same default rate for this quarter.  
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Figure 1: Model development and Validation samples 

 

 

In developing our model specifications, we examine an extended set of variables that follow 

under the classification categories of CAMELS (i.e. Capital, Asset Quality, Management, 

Earnings, Liquidity, and Sensitivity to market risk). Specifically, the independent variables 

tested are the following:  

• Capital adequacy (C): 
i. Equity capital to assets (EQ_ASS) 

ii. Core capital (leverage) ratio (LEV) 

iii. Tier 1 risk-based capital ratio (TIER1) 

iv. Total risk-based capital ratio (CAR) 

v. Common equity tier 1 capital ratio (CET1)  

 

• Asset quality (A): 
i. Loan and lease loss provision to assets (PROV_ASS) 

ii. Net charge-offs to loans (CHOF_LOAN) 

iii. Credit loss provision to net charge-offs (PROV_CHOF) 

iv. Assets per employee ($millions) (ASS_EMP) 

v. Earning assets to total assets ratio (EASS_ASS) 

vi. Loss allowance to loans (LOSS_LOAN) 

vii. Loan loss allowance to noncurrent loans (LOSS_NPL) 

viii. Noncurrent assets plus other real estate owned to assets (NCASS_ORE) 

ix. Noncurrent loans to loans (NPL) 

x. Average total assets (ASSET) 

xi. Average earning assets (EASSET) 
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xii. Average equity (EQUITY) 

xiii. Average total loans (LOAN) 

xiv. Net loans and leases (LNLSNET) 

xv. Loan loss allowance (LNATRES) 

xvi. Restructured Loans & leases (RSLNLTOT) 

xvii. Assets past due 30-89 days (P3ASSET) 

xviii. Restructuring ratio (RESTR) 

xix. Provisions to loans (PROVTL) 

xx. Provision to assets (PROVTA) 

 

• Management capability (M):  
i. Noninterest income to average assets (NFI_ASS) 

ii. Noninterest expense to average assets (EXP_ASS) 

iii. Net operating income to assets (NOI_ASS) 

iv. Earnings coverage of net charge-offs (EAR_CHOF) 

v. Efficiency ratio (EFF) 

vi. Cash dividends to net income (ytd only) (DIV_INC) 

 

• Earnings (E): 
i. Yield on earning assets (YEA) 

ii. Cost of funding earning assets (CFEA) 

iii. Net interest margin (NIM) 

iv. Return on assets (ROA)  

v. Pretax return on assets (PTR_ASS) 

vi. Return on Equity (ROE)  

vii. Retained earnings to average equity (ytd only) (RE_EQ) 

 

• Liquidity (L):  
i. Net loans and leases to total assets (NLOAN_ASS) 

ii. Net loans and leases to deposits (NLOAN_DEP) 

iii. Net loans and leases to core deposits (NLOAN_CDEP) 

iv. Total domestic deposits to total assets (DDEP_ASS) 

v. Volatile Liabilities (V_LIAB) 

 

• Market risk (S): 
i. Asset Fair Value (AFV) 

 

In addition to the above-mentioned variables, we have also explored whether the business 

model/sector, according to the classification provided by FDIC, has any statistical power in 

predicting bank insolvencies. Furthermore, we created a dummy indicating whether in the 

last period a significant bank filed for bankruptcy. This variable can be considered as a 

systematic shock indicator, which can potentially capture any contagion effects among 

banks. 
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To derive more representative drivers to train our models, we experimented with various 

transformations of the aforementioned ratios. Below in brackets [] we present the naming 

convention pertaining to each type of transformation. Specifically, we proceeded by 

executing the following sequential steps:  

(i) We applied a series of simple log transformations [log] on the indicators 

referring to amounts/currency units (e.g. Assets, Equity, Net loans and leases, 

etc.) 

(ii) We calculated lagged variables on a quarterly basis for each indicator [lag1, 

lag2,…., lag8] starting from 1 up to 8 quarters (i.e. 2 years) 

(iii) We computed the quarter-over-quarter change (first difference) [d] for every 

indicator referring to ratios or log amounts and the quarter-over-quarter 

percentage change (relative difference) [PCT] for every indicator referring to 

amounts. 

(iv) All variables in the dataset were floored and capped based on the 1st and 99th 

percentile of each variable respectively.  

(v) For a number of selected regressors, we calculated a series of “distance from 

sector” [DFS] indicators for each quarter. These indicators aim to capture the 

relative performance of a bank relative to its peers. Specifically: 

a. The sector was approximated by the “Asset Concentration Hierarchy” 

variable, which is defined as an indicator of the institution’s primary 

specialization in terms of assets concentrations. It includes the following 

categories:  

i. international specialization,  

ii. agricultural,  

iii. credit-card,  

iv. commercial lending,  

v. mortgage lending,  

vi. consumer lending specialization,  

vii. other specialized less than $1 billion,  

viii. all other less than $1 billion and 

ix. all other more than $1 billion. 

b. For each one of the selected regressors, the mean value for each category of 

the sector proxy was calculated for each quarter. 

c. The “Distance from Sector” was calculated as the difference between the 

mean and the underlying value of each regressor of the same quarter. 

 

The variable generation process led to a set of almost 660 predictors as potential candidates 

for our modeling procedures. The so-obtained set of time-series was narrowed down in four 

consecutive stages (Figure 2):  

i. Initially, we kept the variables exhibiting the highest in-sample correlation with the 

modeled (binary) dependent variable, i.e. the categorization of banks as solvent or 

insolvent at the end of the observation period. Specifically a threshold of at least +/-10% 
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correlation with the default flag variable was applied to narrow down the extended set 

of independent variables.  

ii. Then, a cross correlation matrix analysis was performed. In particular, an explanatory 

variable exhibiting pair-wise correlation higher than 60% in absolute value with another 

explanatory variable was excluded, as it is considered to offer the same qualitative 

information. Among the pair of variables with significant correlation, the one exhibiting 

higher predictive ability with the dependent variable remained in the sample. The 

threshold was set to 60% so as to account for the high number of lagged and distance 

from sector variables of the same regressor, which in some sense capture the same 

information from a different perspective (i.e. across time or relative to the peers/sector 

respectively). The only exception under this stage was that Leverage (LEV) and Capital 

Adequacy Ratio (CAR) variables were both kept, as additional analysis was performed in 

a later stage to assess their standalone importance. 

iii. In the third stage, we used LASSO (Least Absolute Shrinkage and Selection Operator) to 

assess simultaneously the explanatory power of the 104 variables remained under step 

(ii). We used the Elastic Net parameterization with an alpha of 50% and a ten-fold cross 

validation. The regressors to be included in our model were selected based on their 

capacity to minimize the Root Mean Square Error (RMSE). After applying LASSO, the 

number of regressors to be tested decreased to 59. 

iv. Finally, we omitted the variables that were not statistically significant under Random 

Forests. We eventually ended up with 23 regressors to be included in all models 

developed. 
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Figure 2: Flowchart illustrating the variable selection process 

 

 

5. Model Development 

Random forests is a well-established machine learning ensample method broadly used for its 

parsimonious nature and its state of the art performance. Its basic philosophy is based on 

combining three concepts: classification or regression decisions trees, bootstrap aggregation 

or bagging and random subspaces.  Its structure follows a divide-and-conquer approach used 

to capture non linearity’s in the data and perform pattern recognition. Its core principle is 

that a group of “weak learners” combined, can form a “strong predictor” model.  

The outline of the algorithm is the following: Let’s assume that under a supervise setup that 

we want to model the dataset D which is composed by a series of features denoted by Xi-XN, 

where Xi belongs to ℝd space and Y is the dependent variable. The dependent variable can 

either be continuous, in case we have a regression problem, or binary, in case we investigate 

a classification problem.  Let’s also denote B the number of decisions trees the algorithm will 

generate. This group of trees forms the Forest. The randomness is attributed in two steps of 

the algorithm, which basically lead to the generation of random trees.   

So for i=1 to B the algorithm performs the following steps:   

Using bootstrap a random subsample is selected from D denoted Di. Then a tree Ti is 

generated on Di such that in each node of the tree (or each split) a random subset of feature 

or explanatory variables is selected and considers splitting only on these features using the 

CART criterion. So if the number of original features is denoted by N we select a random 

subset of them m in each split for each random tree i.e. m < N.  Thus the construction of 

660 

•Correlation with dependent variable: From 660 initial predictors the variables 
exhibiting the highest in-sample correlation with the dependent variable kept, 
based on a threshold of at least +/-10% correlation. 

104 

•Cross correlation analysis: Variables with pair-wise correlation over 60% in 
absolute value with another variable excluded. Among pairs of collinear variables 
the one exhibiting higher predictive ability with the dependent variable remained.  

59 
•LASSO process: Assess simultaneously the explanatory power of the remaining 

variables.  Number of regressors to be tested decreased to 59. 

23 
•Random Forest Importance: Rank variables based on Random Forest variance 

importance plot. Number of regressors to be tested decreased to 23. 

Variables number 
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trees is performed on a random subspace of features and a random sample of D. After 

constructing the random trees, prediction is performed using bagging method in the 

following way. Each input is entered through each decision tree in the forest and produces a 

forecast. Then, all predictions of each tree are aggregated either as a (weighted) average or 

majority vote, depending if the underlying problem is a regression or a classification, to 

produce a global forecast. Random forests usually avoid over fitting due to the 

aforementioned bagging process and the random spaces procedure embedded in the 

algorithm and provide strong generalization efficacy. 

In this work, we build a statistical framework to classify financial institutions in two 

categories, that is, solvent and insolvent. Thus, the model setup employed is random forests 

for binary classification. In the initial run, the 59 candidate variables were used as input for 

supervised learning in the short in-sample dataset. To build the Random Forests the 

randomForest package in R statistical software was employed. 

By construction, the predictive ability of RFs increases as the inter tree correlation 

decreases. Thus, a large number of predictors can provide increased generalization capacity, 

like in our case where the predictors used were initially 59. Furthermore, performance of 

random forests depends strongly on m, the number of parameters to be used in each split 

for each node creation. If m is relatively low then both inter tree correlation and strength of 

individual tree decreases. So it’s critical for the overall performance of random forests to 

find the optimal of m through a tuning algorithm. Breiman (2001) in his original work 

suggests three possible values for (m) of the following form: ½√m, √m, and 2√m, where m 

equals 59 in our case. In this work we followed a grid tuning approach using a cross 

validation method. That is, we equally split the short in-sample dataset into two distinct 

samples, namely a training subsample and a cross validation subsample. The grid search was 

two dimensional taking a range of values for (m) and for the number of trees to generate. 

The random forests classifier was tested thoroughly on the cross validation dataset to avoid 

over-fitting and to increase generalization during the tuning process. The MSE error criterion 

was used to measure the classification accuracy. In the optimized model the number of trees 

is 650. Figure 3 depicts the MSE error as the number of trees increases. It is evident that as 

the number of trees approaches 650 the MSE flattens. 
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Figure 3: Random Forests error relatively to the number of trees. 

 

Furthermore, being motivated by the work of Genuer et al. (2010), to train the candidate 

Random Forests we also performed an iterative process to detect the variables with the 

highest predictive ability. Essentially, we make use of the variable importance capabilities 

offered by the algorithm. Specifically, starting from 59 initial inputs, this iterative method led 

to the exclusion of 36 variables based on the purity split criterion, so that 23 variables were 

included in the final model. The variable selection process was implemented with two 

objectives. Firstly, to spot important variables highly correlated with the response variable 

for interpretation purposes, and secondly to find a small number of variables sufficient to 

keep tractability of the model and provide sufficient prediction performance. An additional 

qualitative overlay was performed during the training process in order to explore important 

candidate variables that belong to all risk areas of a CAMELS based system. 

In Figure 4 we present for each financial indicator its importance for classification5. The 

ranking is based on two criteria: Mean Square Error and Node Purity. The left part of chart, 

pertaining to the MSE, can be 'interpreted' as follows: if a predictor is important, then 

assigning other values for that predictor, permuting this predictor's values over the dataset, 

should have a negative influence on overall model prediction. In other words, using the 

same model to predict from data that is the same except for this variable, should give worse 

predictions. So, this chart compares MSE of the original dataset with the 'permuted' dataset. 

The values of the variables are scaled so as to be comparable across all variables. The right 

part of the chart presents node impurity. That is, at each split we calculate how much this 

split reduces node impurity, calculated as the difference between Residual Sum of Squares 

(RSS) before and after the split. This is summed over all splits for that variable, over all trees. 

                                                           
5
 The plot presents the 16 more significant variables out of the 23 included in the model.  
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Overall, our results indicate that capital indicators, like Leverage Ratio and CAR, exhibit high 

importance along with ROE, NPL and CFEA (Cost of funding earning assets). 

 

Figure 4: Random Forests Variable Importance Plot. 

 

 

In Figure 5 the forest floor main effect plots of random forest are shown. These plots map 

the structure of bank failure prediction model on the basis of bank specific regulatory and 

financial characteristics. The plots are arranged according to variable importance, where X-

axis shows variable values and Y-axis the corresponding cross validated feature 

contributions. The goodness-of-visualization is evaluated with leave-one-out k-nearest 

neighbor estimation (black line, R2 values), and the graphical representation is based on the 

forestfloor package in R described in the published work of Welling (2016).  

In particular, we present the charts for the variables that interact mostly, based on R-

squared measure, with the dependent variable. The flatter the line the weaker is the relation 

between each regressor and the dependent variable. The parallel color gradients identify 

interactions between the regressors. The graphs point the non-linear negative relation 

between capital measures, such as Leverage and Capital Adequacy Ratio, as well as Retained 

Earnings to Equity with the default intensity of US banks. Equity metrics as measured by ROE 

and ROE_DFS provide also significant interaction with bank default. Furthermore, high 

profitability reduces substantially the probability that a bank will fail. Finally, it seems that 

asset quality, as measures by the NPL ratio, plays a less significant role in predicting bank 

failures in comparison to capital and equity measures. 
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Figure 5: Random Forests important variables effect. 

 

 

6  Model benchmarking and Validation 

6.1 Benchmark models 

In order to assess the robustness of our approach we perform a thorough validation 

procedure. More precisely, we report the performance results obtained from the 

experimental evaluation of our method, in terms of short in-sample fit, out-of-sample 

performance, out-of-time performance and in terms of evaluating the model’s predictive 

ability on the full in-sample dataset. Moreover, we provide strong evidence about the merits 

of our proposed framework by performing extensive benchmarking of our results against 

established statistical models currently used in the related literature. That is we compare 

our model relative to logistic regression (LogR), Linear Discriminant Analysis (LDA), Support 

Vector Machines (SVMs), Neural Networks (NNs) and Random Forest of Conditional 

Inference Trees (CRF). Below we provide more details on the development process of the 

benchmark models. 

 

Logistic regression (LogR) 

Logistic regression is an approach broadly employed for building corporate rating systems 

and retail scorecards due to its parsimonious structure. It was first used by Ohlson (1980) to 



19 

predict corporate bankruptcy based on publicly available financial data. Logistic regression 

models determine the relative importance of coefficients in classifying debtors into two 

distinct classes based on their credit risk (i.e. good or bad obligors). In order to account for 

non-linearities and relaxing the normality assumption a sigmoid likelihood function is 

typically used (Kamstra et al. 2001).  

We implemented logistic regression in R, by using the glm function that performs 

optimization through Iteratively Reweighted Least Squares. In order to reduce the number 

of parameters and so obtain more intuitive results, we performed a stepwise selection 

process. In each step, we dropped variables with p-values more than 15% and we re-

estimated the model. For the avoidance of any multicollinearity issues we used only the 

Leverage Ratio (LEV), while we excluded the Capital Adequacy Ratio (CAR) on the basis of 

Akaike Information Criterion. 

 

Linear discriminant analysis (LDA)  

Linear discriminant analysis (LDA) is a method to find a linear combination of features that 

characterizes or separates two or more classes of objects or events. The main assumptions 

are that the modeled independent variables are normally distributed and that the groups of 

modeled objects (e.g. good and bad obligors) exhibit homoscedasticity. LDA is broadly used 

for credit scoring. For instance, the popular Z-Score algorithm proposed by Altman (1968) is 

based on LDA to build a rating system for predicting corporate bankruptcies. In particular, he 

estimated a linear discriminant function using a series of financial ratios, which covered the 

areas of liquidity, profitability, leverage, solvency and turnover, so as to estimate credit 

quality. 

The normality and homoscedasticity assumptions are hardly ever the case in real-world 

scenarios, thus, being the main drawbacks of this approach. As such, this method cannot 

effectively capture nonlinear relationships among the modeled variables, which is crucial for 

the performance of a credit rating system. We implemented this approach in R using the 

MASS R package, while we restricted our model to the selected variables from the logistic 

regression to reduce the parameters’ dimension and avoid multicollinearity issues. 

 

Support Vector Machines (SVMs) 

SVMs are a family of non-linear, large-margin binary classifiers. SVMs estimate a separating 

hyperplane that achieves maximum separability between the data of the two modeled 

classes (Vapnik, 1998). A significant number of studies point the usefulness of SVMs in credit 

rating systems (Huang, 2009; Harris, 2015), since they reduce the possibility of overfitting 

and alleviate the need of tedious cross-validation for the purpose of appropriate hyper 

parameter selection. The main drawbacks of SVMs stem from the fact that they constitute 

black-box models, thus limiting their potential of offering deeper intuition and visualization 

of the obtained results and inference procedure. 
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In this study, we evaluate soft-margin SVM classifiers using linear, radial basis function (RBF), 

polynomial, and sigmoid kernels, and retain the model configuration yielding optimal 

performance.  

For selecting the proper kernel, we exploit the available validation set. We restrict the model 

to the 23 selected variables from the Random Forest so as to reduce the parameter 

dimension and facilitate the grid selection process. To select the hyperparameters of the 

evaluated kernels as well as the cost hyperparameter of the SVM (related to the adopted 

soft margin), we resort to cross-validation. The candidate values of these hyperparameters 

are selected based on a grid-search algorithm (Vapnik, 1998). We implemented this model in 

R using the kernlab package along with the grid-search functionality included in the e1071 

package (Tune routine). The SVM selected is of C classification type with a Radial Basis 

"Gaussian" kernel. 

In short, to improve the performance of the support vector regression we need to select the 

best parameters for the model. The process of choosing these parameters is called “hyper-

parameter” optimization, or model selection. Figure 6 presents the results of a grid search 

for different couples of cost (y-axis) and gamma (x-axis) for fine tuning the parameters of the 

SVM model. On this graph the darker the region, the closer RMSE is to zero and so the better 

the SVM specification. A large misclassification cost parameter gives low bias, as it penalizes 

the cost of misclassification a lot. However, it leads to high variance, so that the algorithm is 

forced to explain the input data stricter and potentially overfit. Whereas, a small 

misclassification cost allows more bias and lower variance. Regarding gamma, when it is very 

small the model is too constrained and cannot capture the complexity of the data. In this 

case, two points can be classified the same, even if they are far from each other. On the 

other hand, a large gamma means that two points are classified the same, only if they are 

close to each other. 
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Figure 6: Plot of the Parameter tuning for SVM. Sampling method: 10-fold cross validation. 

 

 

Neural Networks (NN) 

Neural networks is a well-known machine learning technique that is broadly used in credit 

rating classification problems. Classification problems are characterized by the availability of 

a big datasets, many explanatory variables, and the possibility of noise existence in the data. 

Experimental results offer evidence that neural networks are able to capture complex non-

linear patterns in the data analyzed. Current literature offers numerous structural variations 

of Neural Networks depending on the number of layers, the flow of information and the 

algorithms used to train them. The most often setup is composed by three layers. The input 

layer in which all candidate variables are imported as a high dimensional vector. The hidden 

layer where the information is transformed and processed forward to the output layer via 

non-linear functions, like sigmoid. The output layer in which the signal from individual 

neurons is aggregated to complete the supervised learning function. To produce the 

benchmark neural network model, we trained on a train and a validation set, both belonging 

to the in sample dataset, various structures of multilayer perceptron neural network (MLP). 

The structures investigated depended on the number of hidden layers, in our case 1- 3, as 

well as the number of neurons in each layers. The latter number varied from 2 through 10, 

following the rule of thumb that each layer must be composed of fewer neurons than the 

previous one in the NN queue.  
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The candidate neural network models were trained using the back propagation supervised 

learning algorithm. That is, each input along with the desired output fed into the model, 

while the weights at both the hidden and output layers are adjusted so that the actual 

output corresponds to the desired output using the gradient descent optimization method. 

The error between actual vs predicted values of the dependent variable decreases in every 

iteration of the algorithm. The iterative process stops when the error falls below a 

predefined threshold, in our case 0.01. The MSE of the performance of each NN on the 

validation sample was used to find the best candidate model. Through this process the 

optimal NN that offered the best generalization capacity on the in sample dataset, while 

avoiding overfitting of the training data was selected.  The best performer was a complete 2 

layer back propagation Multilayer Perceptron (MLP) neural network with hidden neurons. To 

increase overall performance of the neural network the variables were transformed to take 

values in the continuous interval of [0,1]. Along with the different structures explored during 

the training process, further tuning was performed for various step sizes (learning rate), 

momentum values, the number of processing elements (nodes) in the hidden layer(s) and 

the maximum number of learning iterations (epochs) to avoid over-fitting (early stopping). 

The sigmoid was assumed as a process activation function for each node. Training and 

optimization of the neural networks was performed in R using the Neuralnet package. 

Although neural networks are difficult to interpret and their training process can take longer 

than Random Forests, their performance provides a good benchmark to validate other 

methodologies. Figure 7 depicts the structure of the optimized neural network. In particular, 

the input layer to the left side of the plot corresponds to the vector of explanatory variables 

used. Then, the hidden layer in which the data processing/transformation takes place 

follows in the middle of the plot. Finally, the output layer to the right part of the plot 

generates a prediction of the dependent variable. 

 

  



23 

Figure 7: Optimized Neural Network Depiction. 

 

 

Conditional Inference Random Forest (CRF) 

Random Forests comprising of Conditional Inference Trees take into account the 

distributional properties of the measures when distinguishing between a significant and an 

insignificant improvement in the information measure. More precisely, Conditional 

Inference Trees test the global null hypothesis of independence between any of the input 

variables and the response variable. If this hypothesis is not rejected, the algorithm stops. 

Otherwise, the algorithm selects the input variable with the strongest association to the 

response variable. This association is measured by a p-value, corresponding to a test for the 

partial null hypothesis of a single input variable and the response variable based on 

permutation tests. That is, by calculating all possible values of a test statistic under 

rearrangements of the labels on the observed data points. We implemented Conditional 

Inference Random Forest Trees using the party package in R, which is based on a unified 
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framework for conditional inference, or permutation tests, developed by Strasser and 

Weber (1999). 

We present in figure 8 below the variance importance plot of Conditional Inference Random 

Forest, according to the significance of each variable in reducing MSE.  Our results indicate 

that profitability indicators, such as Return on Equity (ROE) and Cost of Funding Earning 

Assets (CFEA), along with capital indicators, like Capital Adequacy Ratio (CAR) and Leverage 

Ratio (LEV), exhibit the highest importance in explaining the response variable. 

 

Figure 8: Variance importance plot of Conditional Inference Random Forest (CRF) 

 
 
 

6.2 Validation measures 

Classification accuracy, as measured by the discriminatory power of a rating system, is the 

main criterion to assess the efficacy of each method and to select the most robust one. In 

this section, we present a series of metrics that are broadly used for quantitatively 

estimating the discriminatory power of each scoring model.  

Considering that a bank failure is not as common as a corporate default, there is a 

predominance of solvent banks in our validation subsamples. That is, our dataset is strongly 
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imbalanced, in the sense that it is not evenly split between low and high risk financial 

institutions. Imbalanced data learning is one of the most challenging problems in data 

mining. The skewed class distribution of such datasets may provide misleading classification 

accuracy based on common evaluation measures. We therefore used a PD cutoff point 

according to which we separate the predicted healthy and failed banks. After thoroughly 

examining different values for this parameter and based on the performance of the 

classification in the short in-sample dataset used for model development, we set the cut off 

criterion to be 50%. Translating sensitivity and specificity as the accuracy of positive (i.e. 

solvent) and negative (i.e. insolvent) cases respectively, we use a set of combined 

performance measures that aim to provide a more credible evaluation (Bekkar et al. 2013). 

In particular, sensitivity and specificity are defined as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

where:  

TP = True Positive, the number of positive cases (i.e. solvent) that are correctly identified as 

positive, 

TN = True Negative, the number of negative cases (i.e. insolvent) that are correctly identified 

as negative cases, 

FN = False Negative, the number of positive cases (i.e. solvent) that are misclassified as 

negative cases (i.e. insolvent), 

FP = False Positive, the number of negative cases (i.e. insolvent) that are incorrectly 

identified as positive cases (i.e. solvent). 

 
More precisely we focus on the following measures 

 G-mean: The geometric mean G-mean is the product of sensitivity and specificity. 

This metric indicates the balance between classification performances on the 

majority and minority class.  

 

𝐺 = √𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

 

A poor performance in prediction of the positive cases will lead to a low G-mean 

value, even if the negative cases are correctly classified from the algorithm. 

 

 LR-: The negative likelihood ratio is the ratio between the probability of predicting a 

case as negative when it is actually positive, and the probability to predict a case as 

negative when it is truly negative.  

 

𝐿𝑅−=  
1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
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A lower negative likelihood ratio means better performance on the negative cases, 

which is the main point of interest in this study as we model bank failures. 

 

 DP: Discriminant power is a measure that summarizes sensitivity and specificity.  

 

𝐷𝑃 =
√3

𝜋
[log (

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
) + log (

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
)] 

 

For DP values higher than 3 then the algorithm distinguishes well between positive 

and negative cases. 

 

 BA: The balanced accuracy is the average of Sensitivity and Specificity. If the 

classifier performs equally well on either class, this term reduces to the conventional 

accuracy measure.  

 

𝐵𝐴 =
1

2
(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) 

  

In contrast, if the conventional accuracy is high merely because the classifier takes 

advantage of good prediction on the majority class (i.e. dominant in terms of events, 

solvent banks in our case), the balanced accuracy will drop thus signaling any 

performance issues. That is, BA doesn’t disregard the accuracy of the model in the 

minority class (i.e. insolvent banks in our case). 

 

 Youden’s γ: Youden’s index is a linear transformation of the mean sensitivity and 

specificity therefore it is difficult to interpret.  

 

𝛾 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 − (1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) 

 

As a general rule, a higher value of Youden’s γ indicates better ability of the 

algorithm to avoid misclassifying banks. 

 

 WBA1: Is a weighted balance accuracy measure which weights specificity more than 

sensitivity (75%/25%). 

 

 WBA2: Is a weighted balance accuracy measure which weights sensitivity more than 

specificity (75%/25%). 

 

 AUC: The area under the ROC6 curve (Area Under Curve, AUC) is a summary 

indicator of the performance of a classifier into a single metric. The AUC can be 

estimated through various techniques, the most commonly used being the 

trapezoidal method. This is a geometrical method based on linear interpolation 

between each point on the ROC curve. The AUC of a classifier is equivalent to the 

                                                           
6
 Receiver Operating Characteristic curve. 
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probability that the classifier will rank a randomly chosen positive instance higher 

than a randomly chosen negative instance. In practice, the value of AUC varies 

between 0.5 and 1 with a value above 0.8 to denote a very good performance of the 

algorithm. 

 

These measures are used so as to derive a full spectrum conclusion regarding the 

classification power of each model relative to the others. 

 

6.3 Validation Findings 

Our original development sample contains 101.641 observations that can be divided into 

100.068 solvent and 1573 insolvent cases, and we call it “Full in-sample”. The overbalanced 

nature of our dataset, which presents a preponderance of solvent banks (i.e. good cases), 

does not facilitate the training of complex techniques. To this end, we created a new training 

sample (called “Short in-sample”), including randomly chosen 10% of the good cases and all 

the bad cases. So, the final training sample used to develop our models contains 10.001 

good cases and 1.572 bad cases, reaching 11.573 observations in total. For the purpose of 

fine tuning the parameters of the random forests and neural networks specifications, we 

further equally divide the short in-sample dataset into training and validation sub-samples 

(50% each). In short, the term “Short in-sample” refers to the more balanced dataset, while 

the term “Full in-sample” refers to the sample that includes all the good cases. As already 

mentioned, the “Out-of-sample” dataset refers to the 20% randomly selected observations 

covering the years 2008-2012. Finally, the “Out-of-time sample” refers to the data for the 

years 2013-2014.  

In terms of performance metrics in the short in-sample, we notice in Table 1 that Random 

Forests and Neural Networks provide the best fit, while Logit and LDA are underperforming 

across all performance metrics. When examining the out-of-sample (Table 2) performance, 

RFs are again the best across almost all performance measures, while logistic regression 

seems also to be an adequate tool for assessing bank failure probability as it is ranked 

second. Regarding out-of-time performance, presented in table 3, Random Forests and 

Neural Networks provide again the best fit, with the former method exhibiting marginally 

better performance in 5 criteria and better performance in 1 criterion relative to the latter. 

Logistic regression performs poorly in the out-of-time period, as it shows the worst 

performance in 6 out of 8 criteria. Finally, when assessing the discriminatory power of our 

specifications in the “Full in-sample”, Random Forests is the dominant methodology. That is, 

in table 4, we can note that Random Forests outperform across all performance metrics. 

Summarizing the results in all samples, it is evident that the proposed RF rating system 

exhibits higher discriminatory power compared to all the considered benchmark models 

when taking into account the skewness of the data. More importantly, the obtained 

performance is more stable and more consistent across all test samples, resulting in lower 

performance variability. Another interesting finding stemming from our results is that NN 

perform relatively well in the “in-sample” and “out-of-time” samples. 
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We point though that the non-anticipated failure of a bank may come at a much higher cost 

for the economy environment relative to a corporate default. In the former case, depositors 

could start concern themselves about the safety of their savings, banks may face liquidity 

problems generated by deposit outflows, so banks cut off business lines, the business 

activity faces a slowdown and generally the economic environment is destabilized. It is 

therefore imperative for supervisory purposes to achieve the maximum possible accuracy 

when setting an Early Warning System for bank failures. 

 

Table 1: Short in-sample performance metrics     

 
Logit LDA RF SVM NN CRF 

AUROC 0,980 0,973 0,989 0,981 0,984 0,991 

G-mean 0,898 0,884 0,921 0,898 0,923 0,914 

LR- 0,183 0,209 0,139 0,184 0,137 0,156 

DP 3,116 2,971 3,255 3,181 3,356 3,312 

BA 0,902 0,889 0,923 0,902 0,925 0,916 

Youden 0,804 0,778 0,846 0,804 0,851 0,833 

WBA1 0,943 0,936 0,953 0,944 0,955 0,951 

WBA2 0,861 0,842 0,893 0,860 0,895 0,881 

 

Table 2: Out-of sample performance metrics 

 
Logit LDA RF SVM NN CRF 

AUROC 0,990 0,983 0,990 0,992 0,980 0,989 

G-mean 0,919 0,905 0,934 0,916 0,922 0,907 

LR- 0,144 0,169 0,113 0,150 0,130 0,165 

DP 3,239 3,099 3,352 3,268 3,051 3,147 

BA 0,921 0,908 0,935 0,919 0,923 0,910 

Youden 0,842 0,816 0,871 0,837 0,847 0,821 

WBA1 0,952 0,945 0,959 0,952 0,948 0,947 

WBA2 0,890 0,871 0,912 0,886 0,898 0,874 

 

Table 3: Out-of time performance metrics       

 
Logit LDA RF SVM NN CRF 

AUROC 0,990 0,974 0,976 0,993 0,990 0,965 

G-mean 0,741 0,824 0,862 0,819 0,862 0,838 

LR- 0,452 0,321 0,255 0,329 0,255 0,296 

DP 3,684 3,590 3,793 3,804 3,722 3,668 

BA 0,774 0,839 0,871 0,835 0,871 0,851 

Youden 0,548 0,677 0,743 0,670 0,742 0,702 

WBA1 0,886 0,918 0,934 0,916 0,934 0,924 

WBA2 0,662 0,759 0,809 0,754 0,809 0,778 
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Table 4: Full in-sample performance metrics   

 
Logit LDA RF SVM NN CRF 

AUROC 0,980 0,973 0,998 0,981 0,981 0,990 

G-mean 0,898 0,884 0,992 0,897 0,926 0,914 

LR- 0,184 0,209 0,000 0,185 0,125 0,153 

DP 3,079 2,960 Inf 3,115 3,124 3,202 

BA 0,901 0,889 0,992 0,901 0,927 0,916 

Youden 0,803 0,777 0,984 0,802 0,854 0,832 

WBA1 0,942 0,935 0,988 0,943 0,951 0,950 

WBA2 0,860 0,842 0,996 0,859 0,903 0,883 

 

In order to further illustrate the higher discriminatory power of the proposed statistical 

model, we present in Figure 9 the corresponding ROC curves corresponding to the four 

datasets analyzed. Receiver operating characteristic curve, or ROC curve, illustrates the 

performance of a binary classifier system as its discrimination threshold is varied. The curve 

is created by plotting the true positive rate against the false positive rate at various 

threshold settings. It shows the tradeoff between sensitivity and specificity, as any increase 

in sensitivity will be accompanied by a decrease in specificity. The closer the curve follows 

the left-hand border and then the top border of the ROC space, the more accurate the 

modeling approach. The ROC curve across all samples is approaching the perfect 

classification line, so supporting the high degree of efficacy and generalization of the 

proposed RFs rating system.  

 

Figure 9: ROC curve performance evaluation of Random Forests.
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6.4 Bootstrapping (Stability) 

To further assess the stability of the developed RFs based rating system, we perform a 

bootstrapping approach on the joint dataset consisting of the out-of-sample and out-of-time 

parts. Specifically, we generate random samples with replacement from the above-

mentioned dataset with a balanced mix between good and bad banks (i.e. 50% and 50% 

respectively) so as to estimate all the discriminatory power statistics as described in section 

6.2. The experiment is performed with 10.000 repetitions. Then, for each one of the 

performance measures we construct confidence intervals so as to assess its stability as well 

as the existence of any bias in the prediction of the proposed RFs model. The results, 

reported in Table 5, denote that the RFs’ performance is stable. In particular, each 

performance metric is distributed in a narrow range around the whole sample performance 

metric. Hence, there is strong evidence for the generalization capacity of RFs, regardless of 

the composition mix between insolvent and solvent financial institutions. In addition, our 

empirical results support the efficacy of the model to capture possible outliers and non-

linear behaviors in the underlying sample, without significant deterioration in its ability to 

discriminate. In short, the bootstrapping exercise verifies the stability of RFs across different 

types of samples. 

 

Table 5: Performance measure stability of RFs  

 
mean -CI 99% +CI 99% 

AUROC 0,9886 0,9886 0,9887 

G-mean 0,9183 0,9181 0,9184 

LR 0,1511 0,1509 0,1514 

DP 3,6619 3,6538 3,6701 

BA 0,9210 0,9209 0,9212 

Youden 0,8421 0,8418 0,8423 

WBA1 0,9565 0,9564 0,9566 

WBA2 0,8856 0,8854 0,8857 

 

6.5 Variable Importance  

There is a big debate in the current literature regarding the level of significance of the 

regressors used in predicting bank failures under the CAMELS framework. Variables related 

to capital, asset quality and earnings most of the times are significant in a typical CAMELS’ 

based model (Poghosyan and Cihak, 2009). Liquidity related variables are also sometimes 

included as significant indicators in various models (Cole and Wu, 2014, Mayes and 

Stremmel, 2014), while indicators related to Management and Sensitivity to Market appear 

to be less significant in predicting bank insolvencies (Mayes and Stremmel, 2014, Betz et al, 

2013). However, there is neither a unanimous conclusion on the significance of certain 

indicators across studies, nor all statistically significant indicators retain their importance up 
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to the default event. For example, Cole and White (2010) show that the Equity to Assets 

ratio losses its predictive power when move back more than two year prior the default date. 

Whereas, Betz et al (2013) showed that Reserves to Impaired assets ratio and RoE are not 

statistically important at all.  

To get further insights on the importance of each explanatory variable in predicting bank 

insolvencies, we use all the benchmark models developed in this study to perform a 

comparative analysis. The aim is to produce a ranking among all explanatory variables used 

as inputs in each one of the statistical models developed. The results of this analysis could 

provide important feedback in an expert judgment approach, in which the weighting is done 

using qualitative criteria. We produced the ranking of the explanatory variables by applying 

the “leave one out” method. That is, we trained each model by excluding one candidate 

variable at a time, and then we measured the performance of the resulting model. This 

approach was applied uniformly across all models and the results are summarized in Table 6. 

We assessed the relative importance of each variable based on its marginal contribution to 

AUROC metric7. Specifically, we excluded each variable, in turn, from each model and we 

measured the loss in AUROC for each specification. We ranked first the variables that led to 

the largest loss in AUROC metric. We can notice in Table 6 that for most models Cost of 

Funding Earnings Assets (CFEA) and leverage ratio (LEV) are leading indicators in bank failure 

forecasting. Indeed, CFEA is by far the most important indicator across all models, as it is on 

average ranked in position 2.3. Apart from CFEA, additional earnings related indicators such 

as Return on Equity (ROE) are also important determinants. On the other hand, Loan loss 

allowance to noncurrent loans (LOSS_NPL) and Noncurrent loans to loans (NPL) appear to be 

the ones with the lower importance across all models, as they are ranked in position 9.7 and 

7.5 respectively. Furthermore, Liquidity risk as measured by the Net Loans to Core Deposits 

(NLOAN_CDEP) and Asset Quality as measured by the distance from the sector of Loss 

allowance to loans (LOSS_LOAN_DFS) have increased significance in the SVM and NN 

models. Thus, the results of the variable importance analysis suggest that profitability (CFEA) 

and capital (LEV) indicators are the most important drivers across all models.  

 

Table 6: Covariate importance ranking per model 
(1: Highest importance, 11: Lowest importance) 

 

Logit LDA RF SVM NN CRF 
Average 

Score 

log(equity)(-4)% 4 3 11 3 7 6 5,7 

d(LEV)(-4) 3 5 8 5 6 8 5,8 

LOSS_LOAN_DFS 7 6 10 1 1 10 5,8 

d(NCASS_ORE)(-4) 9 10 2 8 4 4 6,2 

d(ROA)(-4) 11 8 4 6 8 9 7,7 

LEV 2 2 3 10 5 3 4,2 

NLOAN_CDEP 6 9 7 2 3 7 5,7 

NPL 8 7 5 9 11 5 7,5 

                                                           
7
 For Random Forests the ranking is based on the incMSE% variable importance plot. 
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LOSS_NPL 10 11 6 11 9 11 9,7 

ROE 5 4 9 4 10 1 5,5 

CFEA 1 1 1 7 2 2 2,3 

 

There is inconclusive evidence in the current literature regarding the superiority of certain 

indicators falling under the category of Capital assessment in predicting bank failures. On the 

one hand, Mayes and Stremmel (2014) claim that a simple leverage ratio (unweighted) is a 

better predictor than capital adequacy ratio (risk weighted). While, on the other hand Cole 

and Wu (2014) have identified that those related to capital adequacy are the most 

important predictors of bank failures. To this end, we utilize the models developed in this 

study to further explore the discriminatory power of a simple leverage (LEV) relative to a 

risk-weighted capital adequacy ratio (CAR). This analysis will equip us with a deeper insight 

on the regulatory aspect of these indicators. The comparison is made based on AUROC 

performance metric for Logit, LDA, SVM, NN and based on MSE% variable importance plot 

for RF and CRF. The results of this comparison are summarized in Table 7. Capital adequacy 

ratio outperforms leverage ratio when entered as covariate in more complex models, such 

as Random Forests, Support Vector Machines, Neural Network and Random Forest of 

Conditional Inference Trees. Whereas, in simpler models such as logistic regression and LDA, 

leverage ratio is the dominant covariate.  In short, our analysis implies that the importance 

of the one indicator relative to the other is purely model driven. That is, any conclusions are 

strongly related to the sophistication of the underlying model used to predict bank failures. 

Table 7: Dominance of Capital Adequacy Ratio vs Leverage Ratio per model.  

 
CAR LEV 

Logit 
 



LDA 
 



RF 

 SVM 

 NN 

 CRF    

 

For illustration purposes, we present in Table 8 the two different Logit models, 

corresponding to the inclusion of LEV and CAR variables respectively. According to the AIC 

and BIC information criteria, the Logit model that incorporates the Leverage Ratio (LEV) has 

better fit. 

 

 

 

 

 



33 

Table 8: Comparing Logistic regression models with different capital-related ratios  

 

 

6.6 Implementing Random Forests in European Banks 

To test the generalization of our approach we apply the Random Forests rating system in the 

European banking system. Essentially, we make use of the Random Forests specification in 

creating an Early Warning System of bank failures in Europe. This is a strong test for 

classification purposes as this region is characterized by significant disparity in financial 

institutions driven by country macroeconomic specificities. More specifically, we employ the 

selected Random Forests specification for calculating the default Probability for 173 

European banks based on year end-20158 accounting and regulatory data9. In order to 

benchmark our results we mapped our PDs to rating classes based on lower bound PD 

thresholds described in 2016 Moody’s rating methodology document. 

                                                           
8
 We did not take into account variables based on lag differences greater than 4 (pre 2014 data) and we also 

excluded the variable related to retained earnings to equity ratio, as it was not available in a quarterly basis. 
Since this variable is ranked last in the Random Forests variable importance plot, we do not expect any bias in our 
results. 
9
 Source: SNL 
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We evaluated the concordance of our ranking with the respective Moody’s ranking10 by 

calculating Kendal’s tau, Spearman’s rho and the classical Fisher correlation coefficient. 

Seeing that Moody’s ratings take into account the sovereign rating of a bank’s resident 

country, we adapted our ranking for sovereign rating in a similar way as described in 

Moody’s respective document11. Our credit rating scale has 67% Spearman’s Rho, 59% 

correlation and 47% Kendal’s Tau with the Moody’s Rating system, thus, verifying the high 

positive concordance. In Table 9 the number of High Risk banks is shown by country. A bank 

is defined as High Risk when its Probability of Default, as calculated by the RFs specification, 

is larger than 25%. 

 

  

                                                           
10

 Moody’s rating was available for 95 banks out of 173 of our European banks sample. 

 
11

 p.31 https://www.moodys.com/research/Banks--PBC_186998  

https://www.moodys.com/research/Banks--PBC_186998
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Table 9: Classifying High-Risk banks by European country based on RFs credit rating system 

  

High Risk 
Banks 

Banks in 
Sample 

AT 0 5 

BA 0 2 

BE 1 2 

BG 1 2 

CH 0 17 

CY 0 2 

CZ 0 1 

DE 2 8 

DK 0 15 

ES 1 8 

FI 0 2 

FR 3 11 

GB 0 10 

GE 0 1 

GR 3 5 

HR 2 3 

HU 2 2 

IE 0 3 

IT 7 15 

LI 0 1 

MD 1 1 

MK 0 2 

MT 0 3 

NO 0 12 

PL 0 11 

PT 1 2 

RO 1 2 

RS 0 1 

RU 5 5 

SE 1 3 

SK 0 4 

TR 7 9 

UA 3 3 

Grand 
Total 41 173 

 
 
Focusing on Eurozone we notice that countries experiencing prolonged macroeconomic 

deterioration, which has eroded local banks’ capital and increased non-performing 

exposures show the highest relative number of “High Risk banks”. Specifically, in Greece 

(GR) 3 out of 5 banks and in Italy (IT) 7 out of 15 banks are classified as “High Risk”. On the 

other side, our results confirm that stronger Eurozone economies are accompanied by 

resilient banking systems, so that in Germany (DE), France (FR), Austria (AT), Finland (FI) and 
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Belgium (BE) only 6 out of 28 banks are classified as “High Risk”. Finally, countries regaining 

competitiveness such as Ireland (IE) and Spain (ES) exhibit also relative low levels of risky 

banks, that is, 0 out 3 and 1 out of 8 respectively. 

Outside Eurozone, strong economies such as Switzerland (CH), Norway (NO), Denmark (DK), 

Sweden (SE) and United Kingdom (GB) exhibit close to zero levels of “High Risk Banks”. On 

the contrary Ukraine (UA) that suffered from a military conflict, Turkey (TR) who lost 13% of 

its GDP in the last 3 years and Russia (RU) present a large proportion of “High Risk” Banks (7 

out of 9 in Turkey, 3 out of 3 in Ukraine and 5 out of 5 in Russia).  

We also point the zero number of “High Risk Banks” in Poland (PL) and Slovakia (SK), 

whereas we also gain insight on the fragile Portugal (PT) banking sector. We finally remain 

cautious on the results in Eastern European countries (Bosnia-Herzegovina (BA), Bulgaria 

(BG), Czech Republic (CZ), Georgia (GE), Croatia (HR), Hungary (HU), Moldova (MD), FYROM 

(MK), Romania (RO) and Serbia (RS)) and small countries such as Cyprus (CY), Malta (MT) and 

Lichtenstein (LT), for which our sample contains a limited number of banks. 

 

7. Conclusions and future work  

In this paper, we propose a novel bank credit rating system by leveraging the attractive 

properties of Random Forests. Our proposed method offers a holistic approach, ranging 

from the selection of the most significant bank specific indicators, which can predict its 

survival probability, to the choice of the appropriate machine learning technique that 

aggregates all critical information into a single score.  The core modeling stage of our system 

is based on a Random Forests classification algorithm, which is efficient in capturing non-

linear relationship in financial time series, in modeling successfully outliers, in providing 

transparency on variable importance issues and in increasing the generalization capacity by 

avoiding over-fitting. 

The main contributions of this empirical study and its stark differences from other studies in 

the related literature of bank failures can be summarized in five layers. First and foremost, 

the extensive exploration of the appropriate statistical technique to address this problem by 

implementing six broadly used and state of the art modeling approached. Secondly, the first 

empirical application of Random Forests for predicting bank insolvencies. Third, the robust 

validation approach that we implement to test the efficacy of each modeling technique, 

which includes both out-of-sample and out-of-time validation. Forth, the performance 

measures that we use in order to assess each model are appropriate for imbalanced 

datasets, like the ones we use that is related to bank failures. Last but not least, the 

examination of an extended set of candidate explanatory variables that cover the full 

spectrum of a bank’s financial state, both along time and cross-sectionally. 

Summarizing our experimental results, Random Forests consistently outperforms a series of 

benchmark approaches like Logistic Regression, Linear Discriminant Analysis, Support Vector 

Machines, Neural Networks and Random Forest of Conditional Inference Trees, almost 

across all metrics broadly used for assessing the discriminatory power under an imbalance 
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dataset. Furthermore, we estimated the predictive variance for each performance 

assessment measure by employing bootstrapping. Our analysis provides strong evidence for 

the model’s increased stability and capacity to retain the high performance levels observed 

in the in-sample dataset, when evaluation is performed using out-of-sample and out-of-time 

datasets. This performance consistency implies a much stronger generalization capacity 

compared to the state-of-the-art models, which renders our approach much more attractive 

to researchers and practitioners working in real-world financial institutions. Indeed, they are 

mainly interested in the generalization capacity of their systems, rather than in their in-

sample performance. Furthermore, our results illustrate that in the CAMELS evaluation 

framework, Earnings and Capital metrics constitute the factors with the higher marginal 

contribution in the prediction of bank failures. Finally, we test the performance of the 

proposed Random Forests rating system on the European Banking system, in order to 

further explore its generalization capacity. In particular, we classified the European banks in 

on a credit rating scale based on their riskiness as derived by our RFs specification. The 

produced ranking was benchmarked against Moody’s rating scale to validate its 

performance. This way, we provided additional evidence for the robustness and stability of 

the proposed RFs model even in datasets derived from different jurisdiction.   

One aspect that this work did not consider is whether allowing for our model to account for 

macroeconomic variables can improve prediction performance. Such an approach though 

could be explored in multiple business cycle setup in order to capture the variability in the 

state of the whole banking system. Finally, we note that in our approach we have postulated 

a Random Forests model based only on US Banks performance data and exploited its 

capacity on European Banks. In the future we aim to perform our analysis on enriched 

dataset composing by multiple jurisdictions in order to build a global rating system for 

banks. Nevertheless, the results of this analysis provides valuable information to policy-

makers and regulators in order to assess the health of the financial system based on the 

individual status of each participant and develop policy responses. 
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Appendix 1 - Literature review summary Table 

Author Title Year publshed Dataset Statistical Technique 

Halling - Hayden 
Bank Failure Prediction: 
A Two-Step Survival Time Approach  

2008 Austrian banks 1995 - 2002 
Two-Step Survival 
Time 

Demyanyk - Hasan 
Financial crises and bank failures: 
a review of prediction methods 

2010 - Methodologies Review 

Messai - Gallali 
Financial Leading Indicators of Banking 
Distress: A Micro Prudential 
Approach - Evidence from Europe 

2015 European banks 2007-2011 
Logit & Neural 
Network 

Cole - White 
D ej a vu all over again: The causes of 
U.S. commercial bank failures this time 
around 

2011 FDIC 2004-2008 Logit 

Cihak - Poghosian 
Distress in European Banks: An Analysis 
Based on a New Data Set 

2009 European banks 1996-2007 Logit 

Betz et al Predicting Distress in European Banks 2013 2000 Q1 - 2013 Q2 Recursive logit 

Altunbas et al 
Bank Risk during the Great Recession: 
Do business models matter? 

2012 
Global sample of 16 countries. 
Quarterly data from 2003:q4 to 
2007:q3 

Probit regression, 
Quantile Regression 

Halling - Hayden 
Bank Failure Prediction: 
A Two-Step Survival Time Approach  

2008 Austrian banks 1995 - 2002 
Two-Step Survival 
Time 

Demyanyk - Hasan 
Financial crises and bank failures: 
a review of prediction methods 

2010 - Methodologies Review 

Messai - Gallali 
Financial Leading Indicators of Banking 
Distress: A Micro Prudential 
Approach - Evidence from Europe 

2015 European banks 2007-2011 
Logit & Neural 
Network 

Cole - White 
D ej a vu all over again: The causes of 
U.S. commercial bank failures this time 
around 

2011 FDIC 2004-2008 Logit 

Cihak - Poghosian 
Distress in European Banks: An Analysis 
Based on a New Data Set 

2009 European banks 1996-2007 Logit 

Betz et al Predicting Distress in European Banks 2013 2000 Q1 - 2013 Q2 Recursive logit 

Altunbas et al 
Bank Risk during the Great Recession: 
Do business models matter? 

2012 
Global sample of 16 countries. 
Quarterly data from 2003:q4 to 
2007:q3 

Probit regression, 
Quantile Regression 

Cole - Wu 
Hazard versus probit in predicting U.S. 
bank failures: a regulatory 
perspective over two crises 

2014 FDIC 1984-1992 
Static Probit and time 
varying hazard model 

Ng - Roychowdhury 
Do Loan Loss Reserves Behave like 
Capital? Evidence from Recent Bank 
Failures 

2014 FDIC 2001-2010 
Logit - hazard 
regression 

Katarína Kočišováa*, Mária 
Mišanková 

Discriminant analysis as a tool for 
forecasting company´s financial 
health 

2014 n/a n/a 

Pooran Lall 
Factors affecting U.S. Banking 
Performance: Evidence 
From the 2007-2013 Financial Crisis 

2014 
2007-2013 
Quarterly Call Report, Federal 
reserve bank of Chichago 

GLS 
(to overcome 
heteroskedsticity issue 
in panel data) 

Allen N.Berger a,b,c,n, 
ChristaH.S.Bouwmanb,d,1 

How doescapital affec tbank 
performance during financial 
crises ? 

2013 1984-2010, quarterly 

Logit Regression for 
survival probability 
 
OLS for market share 

Yulia Demyanyk – Iftekhar Hasan 
Financial crises and bank failures: 
a review of prediction methods 

2009 n/a n/a 

David G Mayes* Hanno 
Stremmel** 

THE EFFECTIVENESS OF 
CAPITAL ADEQUACY MEASURES 
IN PREDICTING BANK DISTRESS 

2012 

Quarterly data set of FDIC 
insured US banks from 1992 to 
2012 
 
710.000 obs 

Logit technique, 
 
Discrete survival time 
analysis, 

Aykut Ekinci 
Forecasting Bank Failure: Base Learners, 
Ensembles 
and Hybrid Ensembles 

2016 

Turkey: 37 privately owned 
commercial banks operating in 
Turkey between 1997 and 2001. 
17 out of the 37 banks faced 
with financial failure 
because of 1998 Asian and 2001 
financial crises. 

Logistic, J48 and Voted 
Perceptron, Random 
Subspaces, Bagging, 
Hybrid 

Shukai Li 
A novelty detection machine and its 
application to bank failure prediction 

2014 

USA : Definition of default: 
regulatory closure 
is the defining event of failure. 
21 years 1980 - 2000 federal 
reserve bank of chicago call 
reports 

novelty detection 
machine 

Raymond A.K. Coxa 
Predicting the US bank failure: A 
discriminant analysis 

2014 
USA Bank failures 2007 to 2010 
FDIC Quarterly 

Linear and Quadratic 
Discriminant Analysis 

Peter Wanke 
Predicting performance in ASEAN banks: 
an integrated 
fuzzy MCDM–neural network approach 

2015 
88 Association of Southeast 
Asian Nations banks from 2010 
to 2013, 

ntegrated 
fuzzy MCDM–neural 
network approach 

Laura Chiaramonte 
Should we trust the Z-score? Evidence 
from the 
European Banking Industry 

2015 
European banks from 12 
countries over the period 2001–
2011 (Banscope) 

probit and 
complementary 
log–log models hazard 
rate model 

Katarína Kočišováa*, Mária 
Mišanková 

Discriminant analysis as a tool for 
forecasting company´s financial 
health 

2014 n/a n/a 

Pooran Lall 
Factors affecting U.S. Banking 
Performance: Evidence 
From the 2007-2013 Financial Crisis 

2014 
2007-2013 
Quarterly Call Report, Federal 
reserve bank of Chichago 

GLS 
(to overcome 
heteroskedsticity issue 
in panel data) 
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Allen N.Berger a,b,c,n, 
ChristaH.S.Bouwmanb,d,1 

How doescapital affec tbank 
performance during financial 
crises ? 

2013 1984-2010, quarterly 

Logit Regression for 
survival probability 
 
OLS for market share 

Yulia Demyanyk – Iftekhar Hasan 
Financial crises and bank failures: 
a review of prediction methods 

2009 n/a n/a 

David G Mayes* Hanno 
Stremmel** 

THE EFFECTIVENESS OF 
CAPITAL ADEQUACY MEASURES 
IN PREDICTING BANK DISTRESS 

2012 

Quarterly data set of FDIC 
insured US banks from 1992 to 
2012 
 
710.000 obs 

Logit technique, 
 
Discrete survival time 
analysis, 

Halling - Hayden 
Bank Failure Prediction: 
A Two-Step Survival Time Approach  

2008 Austrian banks 1995 - 2002 
Two-Step Survival 
Time 

Demyanyk - Hasan 
Financial crises and bank failures: 
a review of prediction methods 

2010 - Methodologies Review 

Messai - Gallali 
Financial Leading Indicators of Banking 
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