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Abstract

We model the term structures of sovereign and bank credit default swaps by using a

multivariate credit risk model. First, the probability of joint defaults of large Eurozone

sovereigns (systemic risk) is separated from that of sovereign-specific defaults (country

risk). Then, individual banks’ exposures to each type of sovereign risk, as well as bank-

specific credit risk, are quantified. Banks’ exposures to each type of sovereign risk vary

with their size, holdings of sovereign debt, and expected government support. On av-

erage, 45% of French and Spanish banks’, but only 30% of Italian and 23% of German

banks’ credit risk is sovereign risk. Furthermore, short- to medium-term contracts are

particularly informative on sovereign systemic risk.
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1 Introduction

A key feature of the 2008-2009 global crisis and of the recent debt crisis in Europe was the

tight nexus between banks and sovereigns (e.g. Gennaioli, Martin and Rossi, 2013; Acharya,

Dreschsler and Schnabl, 2013; Acharya and Rajan, 2013; and, Korte and Steffen, 2014). In a

number of countries, the crisis originated in the banking sector, transmitted to the sovereign,

and eventually fed back into the balance sheets of the banks (e.g. an Irish-style crisis). In

contrast, in some other countries, sovereign public finances were the initial source of fragility,

which then transmitted to the banks (e.g. a Greek-style crisis). However, regardless of where

the crisis was originated, European banks’ exposure to the credit risk of the domestic sovereign

has been apparent since late 2008.

Banks are also exposed to the credit risk of non-domestic sovereigns. The sustainability

of public debt in peripheral European countries hinders the health not only of the domestic

banking sector, but also of other Eurozone countries’ banking sectors through, for example,

bank holdings of other countries’ sovereign debt (Bolton and Jeanne, 2011). Banks’ cross-

border holdings of sovereign securities strengthen not only the links among banks and non-

domestic sovereigns, but also among European sovereigns (Korte and Steffen, 2014). As a

result, the risk of a break-up of the Eurozone, possibly due to joint defaults of large sovereigns,

becomes tangible. This risk can, in turn, affect banks’ balance sheets.

Taken together, these factors suggest that European banks are vulnerable not only to

the risk of the domestic sovereign default, but also to the systemic risk of the Euro area

sovereigns. Therefore, main goals of this paper are to first disentangle systemic and country

sovereign credit risk for large European sovereigns, and then quantify and explain the cross

section of individual exposures of large European banks to each type of sovereign risk. We

do so by modeling the term structure of sovereign and bank credit default swaps (CDS), so

that we only use publicly available information. Specifically, we first develop a multivariate

reduced-form credit risk model that captures joint defaults of systemically important European

sovereigns. We refer to this event as systemic sovereign risk, similar to Ang and Longstaff

(2013), or simply as Euro tail risk. Notably, sovereigns can differ in their exposures to this

systemic risk, as each sovereign has a different probability of defaulting when a systemic shock

occurs. However, sovereigns can also default in isolation in the event of a sovereign-specific

credit shock, which we label as country (sovereign) risk.

Sovereign credit risk transmits into bank credit risk through a number of channels (see, e.g.,

Committee on the Global Financial System [CGFS], 2011). In this way, banks are exposed to

sovereign risk, and are likely to default in conjunction with a sovereign default. However, we

differentiate between domestic sovereign credit risk and the systemic sovereign credit risk of

the Eurozone. We also allow banks to default in the event of a bank-specific credit shock, so

that bank credit risk is partly idiosyncratic (e.g. Dittmar and Yuan, 2008). As a result, banks

can default in conjunction with systemic sovereign shocks, country-specific sovereign shocks,
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or bank-specific shocks. We then regress the cross section of the estimated bank exposures

to sovereign risk, as extracted from CDS data by means of the multivariate credit model,

on a number of relevant variables, such as bank size, holdings of domestic and non-domestic

sovereign debt (and the associated subsidy), and expected government support.

We estimate the model in two stages. In the first stage, we estimate a multivariate reduced-

form credit risk model, similar to that found in Ang and Longstaff (2013), on the term

structures of sovereign CDS premia for Germany, France, Italy, and Spain over the 2008-2013

period. Therefore, we focus on a small but pivotal group of systemically important countries

for the Eurozone. This allows us to identify a particularly severe joint credit shock that

is likely not only to generate a dramatic drop in the Eurozone’s real activity, but also to

eventually trigger the break-up of the Eurozone itself. Of particular interest is also the fact

that these countries were involved in the 2008-2009 financial crisis and in the Euro debt crisis

to different extents and at different times (e.g. Ang and Longstaff, 2013; Gonzales-Hermosillo

and Johnson, 2014). In addition, a large number of the most systemically important European

banks are located in these countries.

In the second stage, we estimate each bank’s exposure to the systemic and country sovereign

credit risk calculated in the first-stage estimation, and bank-specific credit risk. For each

country, we select only the largest banks. This leaves us with a rather homogeneous group of

21 European banks that are roughly equally split across countries.

A number of interesting results emerge from our empirical analysis. First, we find that

there are four distinct phases characterizing the evolution of systemic sovereign risk. The

main turning points are clearly associated with a few major political and economic events.

The first phase spans the 2008-2009 financial crisis. After an initially subdued response to

the onset of the financial crisis, systemic sovereign risk begins to increase around October

2008, which is about the time Lehman defaults, and the governments take on bank credit

risk by introducing system-wide packages to rescue the banks (Panetta et al., 2009). The

second phase coincides with the shift of focus from the US to the Eurozone’s public finances,

and the consequent surge in systemic sovereign risk. Systemic sovereign risk then wears off

around the time of the introduction of the European Stability Mechanisms. Soon after, the

fear that Europe’s debt crisis is spiraling out of control emerges, which marks the start of the

third phase. In fact, sovereign risk reaches its sample maximum in November 2011. The many

measures undertaken by the European authorities might help attenuate the unprecedented rise

in systemic sovereign risk. However, only with Mario Draghi’s “Courageous Leap” speech in

May 2012, the “Whatever It Takes” speech in July 2012, and the introduction of the Outright

Monetary Transactions (OMT) in August 2012 does systemic sovereign risk finally vanish.

In the fourth OMT phase, our estimates reveal that the market is no longer pricing in Euro

systemic sovereign risk.

Second, Spain and Italy are the countries most exposed to systemic risk, with exposures
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of 6.01 and 5.96, respectively. This implies that their probabilities of defaulting as a systemic

shock arrives are roughly six times higher than the probability that Germany will default.

France’s systemic exposure is 2.56, which is substantially lower than the corresponding figures

for Spain and Italy, but higher than Germany. These estimates highlight the fragility of Spain

and Italy during the Eurozone’s debt crisis. However, sovereign systemic exposures tend to

increase with the (average) credit risk of the sovereign. For this reason, we also look at the

systemic intensity weight, which denotes the fraction of sovereign risk that is systemic and is

readily comparable across sovereigns with different levels of risk. Interestingly, this alternative

metric changes the ordering of systemic countries remarkably. In fact, the systemic component

explains, on average, 66.2% and 69.7% of the credit risk of Germany and France, respectively,

but only 48.5% and 44.4% of the credit risk of Italy and Spain, respectively. Thus, country

sovereign risk is particularly important for Spain and Italy, while a small but significant share

of German credit risk is country specific.

Third, we find strong evidence that European banks are exposed to both systemic and coun-

try sovereign credit risk. Spanish banks display the highest exposures to systemic sovereign

risk, which average 4.60. They are followed by French, Italian, and German banks, with ex-

posures of 2.84, 1.95, and 1.63, respectively. Therefore, Spanish and Italian banks are less

exposed to systemic risk than their respective sovereigns. This highlights the sovereign na-

ture of the crisis, and the pivotal role of the Spanish and Italian sovereigns. In contrast, the

significant exposures of French and German banks to Euro tail risk might reflect their large

holdings of cross-border assets, also including peripheral Eurozone debt. Systemic sovereign

risk explains the largest fraction of French banks’ credit risk (30%), which can reach a sample

maximum of 81%. In contrast, systemic risk explains only 11% of Italian banks’ credit risk

(maximum of 39%), and it accounts for roughly 16% and 21%, respectively, of German and

Spanish banks’ credit risk. However, country sovereign risk is also an important determi-

nant of banks’ credit risk. In fact, it explains a substantial fraction of Spanish, Italian, and

French banks’ credit risk (23.6%, 18.4% and 17.0%, respectively), whereas it only explains

7% of German banks’ credit risk. These results, taken together, show that sovereign credit

risk, on average, accounts for roughly 45% of French and Spanish bank credit risk, while the

corresponding figures for Italian and German banks are 30% and 23%.

Fourth, our estimates reveal that the market assesses that banks differ in terms of their

exposures to systemic and country sovereign risk. A natural question therefore is to what

extent these estimated bank exposures relate to commonly used measures of the bank-sovereign

nexus that are based on ratings and balance sheet variables. We answer this question through

a series of cross-sectional regressions, which show that: (i) the share of bank credit risk

that is attributable to sovereign risk increases with bank size, while smaller banks display

higher credit risk that is largely bank specific; (ii) the fraction of a bank’s systemic sovereign

credit risk increases with the bank’s holdings of non-domestic sovereign debt and with the
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associated non-domestic subsidy, as measured in Korte and Steffen (2014), resulting from the

“zero risk weight” regime that is de facto applied to bank holdings of Eurozone government

debt; (iii) the fraction of a bank’s country sovereign risk increases with the bank’s holdings

of domestic sovereign debt and with the associated domestic subsidy that results from the

“zero risk weight” regime; and (iv) the higher the expected government support, the higher

the probability that the bank will default when a country sovereign shock arrives.

Finally, monetary authorities appear to be increasingly interested in quantifying expected

excess returns (or credit risk premia) to investors for bearing the credit risk on defaultable

bonds (Stein, 2014). A clear advantage of our model is that we can easily estimate the credit

distress risk premia implied in the CDS spreads for different horizons, and we can also identify

the distress risk premia associated with each component of credit risk. As for sovereigns, we

find that the percentage contribution of the total risk premium to the spreads (CRP) is

particularly high and decreases with the credit risk of the sovereign. Moreover, it displays an

upward-sloping term structure.

However, the behaviors of the systemic (SCRP) and country (CCRP) sovereign risk premia

differ remarkably. In fact, while the term structure of the SCRPs is hump-shaped, the CCRPs

term structure slopes upward. This evidence partly explains why we also find that the fraction

of the CDS spreads due to systemic sovereign risk decreases with maturity. For example, the

contribution of systemic risk to the one-, three-, five-, and ten-year CDS spreads for the

Italian sovereign is, on average, 44%, 37%, 28% and 18%, respectively. This suggests that

short- to medium-term contracts are particularly informative with regard to Eurozone’s tail

risk. This finding, therefore, lends support to the choice of the ECB to tackle Eurozone’s

systemic risk by focusing the Outright Monetary Transactions on government-issued bonds

with short maturities. Moreover, banks’ CRPs are lower than sovereigns’ CRPs, but their

term structure is generally steeper, due to the presence of bank-specific risk premia (BCRP),

which also display a particularly steep upward-sloping term structure.

Related Literature. Bank exposures to sovereign risk and the implementation of adequate

measures to break the tight link are at the center of the ongoing policy debate (e.g. Van

Rompuy et al., 2012; Draghi, 2012; Mersch, 2013; and, Angelini, Grande and Panetta, 2014).

Such delicate issue has also inspired a number of largely theoretical studies. For example,

Gennaioli, Martin, and Rossi (2013) study the link between domestic government defaults

and financial fragility, featuring a Greek-style crisis in which the distressed state of the public

finances hinders the stability of the private banking sector. In our model, this link is captured

by banks’ exposures to country sovereign credit risk. Bolton and Jeanne (2011) focus on the

link between a sovereign debt crisis in one country and its spread to other countries, through an

integrated banking system. This channel, which is a distinctive feature of the European debt

crisis, can also result in intensified links among sovereigns (Korte and Steffen, 2014). In our

model, this clustering of sovereign defaults is captured by the systemic sovereign shock, and
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banks are also exposed to this type of sovereign risk. Our main contribution to this literature

therefore lies in our provision of a quantitative framework for assessing banks’ exposures to

sovereign risk.

The channels through which such intimate sovereign-bank links can manifest are presented

in a number of studies (e.g. CGFS, 2011; Correa et al., 2014; Angelini, Grande, and Panetta,

2014). Acharya, Dreschsler, and Schnabl (2013) were the first to model both theoretically and

empirically the two-way sovereign-bank feedback. Our results fit well with their timeline. In

particular, we show that, after an initial subdued response to the start of the crisis, sovereign

credit risk increases in the aftermath of the introduction of the system-wide packages to rescue

troubled banks. In fact, our estimates show that, around this time, the share of bank credit

risk due to sovereign risk increases and that European banks are exposed thereafter to the

increasing sovereign risk.

Our multivariate credit-risk model brings together the two-factor sovereign multivariate

credit risk model of Ang and Longstaff (2013) and the two-factor bank multivariate credit

risk model of Li and Zinna (2014). As a result, our three-factor model specification, coupled

with the two-stage estimation methodology, allows us to investigate bank exposures to both

systemic and country sovereign credit risk. Our study also contributes to the extensive lit-

erature on reduced-form credit risk models (Duffie and Singleton, 1999; Driessen, 2005) and

on the pricing of CDS premia (Pan and Singleton, 2008; Longstaff et al., 2011; Zinna, 2013).

In this regard, the novelty of our model is that the pricing of bank CDS premia is driven by

three-separate stochastic processes. For this reason, our model also relates to the three-factor

portfolio credit models of Longstaff and Rajan (2008) and Bahansali, Gingrich, and Longstaff

(2008).

The analysis is also linked to recent attempts to measure systemic risk using only publicly

available information (Adrian and Brunnermeier, 2011; Acharya, et al., 2010; Brownlees and

Engle, 2012; Giglio, Kelly, Pruitt, and Qiao, 2013; Billio et al., 2012; see Bisias et al., 2012 for

a survey). However, our primary focus is not on systemic risk as such but, more specifically,

on the sovereign risk of European banks. Sovereign risk is not the only source of systemic

vulnerability for banks. Other standard sources of risk that may have a systemic nature and

pertain to banks but not to sovereigns relate for example to regulation, funding, liquidity and

monetary policy (see e.g. Kashyap and Stein, 2000, 2004; Brunnermeier, 2009; Cetorelli and

Goldberg, 2012). In fact, we find that bank-specific intensities of default, i.e. bank credit

risk cleaned from banks’ exposures to sovereign risk, still comove substantially; this confirms

that (i) those alternative sources of systemic risk are empirically relevant, and (ii) our model

is successful in separating them from the component that is directly associated to sovereign

risk. Finally, our study is also related to the increasing number of studies focusing on the

Eurozone’s debt crisis and the role of European banks in particular (see, e.g., Noeth and

Sengupta, 2012; Black et al., 2013; Lamont et al., 2013; Acharya and Steffen, 2014; Korte and
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Steffen, 2014; Gonazale-Hermosillo and Johnson, 2014).

The remainder of the paper is organized as follows. Section 2 builds up our model. Section 3

presents the data. Section 4 discusses the econometric method and model estimation. Section

5 presents sovereign and bank credit risk, as well as a detailed cross-sectional analysis of

bank exposures to sovereign risk. Section 6 focuses on the distress risk premia, and Section

7 concludes the paper. A separate Internet Appendix provides a detailed description of the

estimation methodology and contains additional materials on the empirical results.

2 The Model

Credit Default Swap Pricing. A credit default swap (CDS) is an insurance contract, in

which the protection seller takes on the risk of an agreed credit event against the payment of a

premium from the protection buyer. The protection seller covers the loss that the protection

buyer might incur contingent on the credit event (protection leg). In return, the protection

buyer pays an annuity to the protection seller (premium leg). The protection buyer stops

paying the premium to the seller when the contract reaches maturity or before that point if

the credit event takes place. As a result, the fair swap premium is determined such that the

default swap contract has zero value at inception.

Fix a probability space (Ω,F,Q) such that the complete filtration {Ft}t≥0 satisfies the

usual conditions, where Q denotes the risk-neutral martingale measure (Harrison and Kreps

(1979)). Let CDS(t,M) denote the annualized premium paid by the protection buyer, which

is determined at time t for a contract maturing in M years, rt the instantaneous default-free

interest rate, and λt the intensity of a credit event. If we assume that the premium is paid

continuously, the present value of the premium leg of a credit default swap is given by:

P (CDS, t,M) = CDS(t,M)EQ
[ ∫ t+M

t

exp
(
−
∫ s

t

ru + λudu
)
ds
]
, (1)

and the present value of the protection leg, given a constant risk-neutral fractional recovery

RQ, is instead given by:

PR(RQ, t,M) = (1−RQ)EQ
[ ∫ t+M

t

λs exp
(
−
∫ s

t

ru + λudu
)
ds
]
. (2)

The fair value of CDS(t,M) is then derived by equating the protection leg PR(RQ, t,M) and

the premium leg P (CDS, t,M):

CDS(t,M) =
(1−RQ)EQ

[ ∫ t+M
t

λs exp
(
−
∫ s
t
ru + λudu

)
ds
]

EQ
[ ∫ t+M

t
exp

(
−
∫ s
t
ru + λudu

)
ds
] . (3)
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This simple reduced-form framework, in which the credit event is modeled as an unpre-

dictable jump of a Poisson process driven by the intensity λt (see Duffie and Singleton, 1999;

among others), is suitable for the pricing of both sovereign and bank default swaps. More

fundamentally, the specification of the intensity λt, coupled with the estimation methodology,

is central to the identification of the different sources of credit risk allowing for default clus-

tering across entities. In what follows, we describe our model of sovereign and bank credit

risk.

Sovereign Credit Risk. We build on Ang and Longstaff (2013), such that we assume

that two types of credit events can trigger sovereign defaults. First, sovereigns can default

in the event of country (i.e. sovereign-specific) shocks. Second, sovereigns can experience

joint defaults (i.e., default clustering), so that there is a systemic intensity that jointly deter-

mines their credit risk. Thus, during a systemic event every sovereign can eventually default,

but sovereigns’ exposures to this systemic event can differ. Specifically, sovereign i’s default

intensity is composed of the country intensity (Ct,i) and the scaled systemic intensity (αiSt):

λt,i = αiSt + Ct,i, (4)

where the sovereign exposure αi determines the sovereign-specific probability of default when

a systemic shock arrives and can therefore only take non-negative values. In sum, we focus

on two types of sovereign risk, which we refer to as ‘systemic’ and ‘country specific’.

In line with Longstaff et al. (2005), among others, we assume that the country-specific

intensity Ct,i follows a standard square-root (CIR) process under the risk-neutral measure:

dCt,i = (ηi − κQi Ct,i)dt+ σi
√
Ct,idW

Q
t,i, (5)

where ηi, κ
Q
i , and σi are constants and the Brownian motion WQ

t,i is sovereign specific.1 Simi-

larly, the common intensity St follows the CIR process:

dSt = (η − κQSt)dt+ σ
√
StdB

Q
t , (6)

where η, κQ, and σ are the constants, and the Brownian motion is now BQ
t , which is indepen-

dent of WQ
t,i.

Bank Credit Risk. We model bank credit risk such that banks can default not only in

conjunction with idiosyncratic (or bank-specific) shocks, but also in conjunction with sovereign

credit shocks. In particular, banks are exposed to systemic sovereign credit risk and to the

1The squared-root process is particularly suitable for modelling the intensity of default for a number of
reasons: (i) standard results, such as Duffie et al. (2000), hold so that closed-form solutions for the building-
blocks of the CDS pricing can be derived; (ii) under mild conditions, the squared-root process only takes
positive values; and (iii) the volatility is state dependent. For these reasons, it has been widely used in the
credit risk literature (see, for example, Driessen, 2005; Ang and Longstaff, 2013; Li and Zinna, 2013).
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credit risk of the domestic sovereign. As a result, the intensity of default of bank j located

in country i is the sum of the scaled systemic intensity (αi,jSt,i), the scaled country intensity

(γi,jCt,i), and the idiosyncratic intensity (It,i,j):

λt,i,j = αi,jSt + γi,jCt,i + It,i,j, (7)

where αi,j and γi,j are non-negative constants determining the bank’s probability of defaulting

as systemic and country sovereign credit events occur, respectively. Similar to St and Ct,i, we

assume that also the bank-specific intensity (It,i,j) follows a squared-root dynamics:

dIt,i,j = (ηi,j − κQi,jIt,i,j)dt+ σi,j
√
It,i,jdZ

Q
t,i,j, (8)

where ηi,j, κ
Q
i,j, and σi,j are the constants and the Brownian motion is now ZQ

t,i,j, which is

independent of BQ
t and WQ

t,i.
2

Given the specifications of default risk, (4) and (7), and the square-root dynamics of

the individual intensities, (5), (6), and (8), the expectations in (1) and (2) can be solved

analytically by using the transform approach of Duffie, Pan, and Singleton (2000). We can thus

easily find the fair value CDS(t,M) of both sovereign and bank CDS spreads (see Appendix

A).

Finally, to close the model, we employ the essentially affine default price of risk for the

diffusion risks in (5), (6), and (8), as in Duffee (2002). As a result, the intensities conveniently

follow the square-root processes also under the objective measure (P):

dSt = (η − κPSt)dt+ σ
√
StdB

P
t , (9)

dCt,i = (ηi − κPiCt,i)dt+ σi
√
Ct,idW

P
t,i, (10)

dIt,i,j = (ηi,j − κPi,jIt,i,j)dt+ σi,j
√
It,i,jdZ

P
t,i,j, (11)

where BP
t , W P

t,i and ZP
t,i,j are Brownian motions defined under the objective measure, which

are still mutually independent. Therefore, instantaneous systemic, country-specific and bank-

specific distress risk premia depend on π = κQ − κP , πi = κQi − κPi and πi,j = κQi,j − κPi,j,

respectively.3

2This assumption of independent Brownian motions is mainly adopted to preserve model tractability; cor-
related shocks complicate the pricing of the CDS, the estimation and the distress risk premium decomposition.
For this reason, this assumption is widely used in credit risk multivariate models (Ang and Longstaff, 2013; and
Li and Zinna, 2013). However, this comes at the cost of not being able to study the transmission of shocks, or
contagion, among systemic, country-specific and bank risk. If instead, for instance, the dWt,i were correlated
among themselves and with dBt it would then be possible (subject to additional identifying assumptions) to
(i) investigate sovereign contagion among countries, and (ii) assess each country’s role in causing variations in
sovereign systemic risk (St).

3The extended market price of risk proposed by Cheridito, Filipovic and Kimmel (2007) is a more general
specification. Under this specification the mean reversion parameters and the unconditional mean parameters,
are allowed to change under P and Q. However, this parametric form of the market price of risk requires the
Feller condition to be satisfied both under P and Q in order to avoid arbitrage opportunities. In practice, this
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3 The Data

3.1 Sample Selection

In order to identify a particularly severe joint credit event that can have significant conse-

quences for the Eurozone, we focus on the four largest European countries: Germany, France,

Italy and Spain. The severity of such an event is likely to not only generate a dramatic drop in

real activity, with the Eurozone economy sinking into a recession, but also to eventually trig-

ger the tail risk of a breakup of the Euro area. Therefore, differently from Ang and Longstaff

(2013), we focus on a smaller, but pivotal, group of systemically important countries for the

Euro area. Nevertheless, we adopt Ang and Longstaff’s (2013) terminology in that we define

(Eurozone sovereign) systemic risk as the probability that more than one country will default

at the same time.4 Moreover, the evolution of credit risk in these countries is characterized

by remarkable differences, as they were involved in the 2008-2009 financial crisis and later in

the Eurozone debt crisis to different extents and at different times (Ang and Longstaff, 2013;

Gonzales-Hermosillo and Johnson, 2014). Furthermore, by choosing this set of countries, we

can select a sufficiently large number of systemically important banks for each country. In the

subsequent analysis, this enables us to compare the differing banking sectors, especially with

regard to their exposures to systemic and country sovereign credit shocks.

Ample anecdotal evidence suggests that each banking system displayed a certain role

in the transmission of the crisis in the Eurozone. In the buildup to the 2008-2009 crisis,

Europe leveraged its international balance sheet significantly by issuing considerable sovereign

debt and bank debt, and using the proceeds to buy substantial amounts of highly rated US

mortgage-backed securities and other fixed-income products (Bernanke, Bertaut and Kamin,

2011). In particular, German and French banks suffered substantial losses as a consequence

of the crisis in the US mortgage market (Acharya and Schnabl, 2010). In this way, European

banks contributed to the unfolding of the Euro debt crisis. German and French banks were also

highly exposed to the debt of Greece, Portugal, Ireland, Italy and Spain, until the start of the

Euro crisis (Lindner, 2013). In contrast, the impact of the initial phase of the crisis on Spanish

banks was limited, reflecting their traditional retail banking models. However, in 2009, the

downturn in the real economy directly affected Spanish banks’ balance sheets, through asset

impairments, especially impairments of assets linked to the real-estate development sector

implies that a series of non-linear constraints must be implemented in the estimation. The imposition of these
restrictions in our multivariate credit model comes at a high computational cost, and deteriorates the pricing
of the term structure of CDS. For these reasons, we use the more parsimonious essentially affine market price
of risk, similar to Feldhutter and Nielsen (2012) and Li and Zinna (2014), among others.

4There is a widespread debate on what is a truly systemic event (see, for example, Hansen, 2013). Events
that can lead to the breakdown of or major dysfunctions in financial markets with severe implications for real
activity are generally denoted as systemic events. In this study, we refer to the joint defaults of sovereigns as
Eurozone systemic sovereign risk, or simply as systemic risk in line with Ang and Longstaff (2013). However,
such events could also be defined as Eurozone tail risk or systematic risk. For our analysis, the crucial point
though is to disentangle this event from country-specific sovereign risk.
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(Bank of Spain, 2011). This source of fragility, in turn, exposed Spanish banks to the tensions

that still prevailed in international markets. Notably, the fragility of the Italian banks was

enhanced by their direct exposure to domestic sovereign risk.

These considerations lead to our explanation of how we select the banks for each country.

Above all, we are interested in systemically important banks. For France and Italy, the choice

is rather straightforward, as we select the same banks that are included in the European

Banking Authority (EBA) stress-testing exercise, which results in four French banks and

five Italian banks.5 In contrast, the German and Spanish banking systems are much more

fragmented, as documented by the large number of banks included in the EBA stress test.

However, as we aim to focus our analysis on a homogeneous group of large European banks,

we only select German and Spanish banks with total asset of more than 100 USD, for which a

sufficiently liquid term structure of CDS premia is available. Furthermore, we try not include

subsidiaries, with only few exceptions. This selection criterion leaves us with seven German

banks and five Spanish banks. As a result, we end up with a total of 21 banks, which are

roughly equally split across countries. The names of the individual banks are provided in

Table 1.

3.2 The Term Structure of CDS Prices

The data for this study include the term structures of sovereign and bank CDS spreads for

the one-, three-, five-, seven- and ten-year maturities. The notional of the sovereign CDS

contracts is specified in dollars, whereas the notional of bank CDS contracts is specified in

euros, thus reflecting the most liquid contracts.6 The data are obtained from Credit Market

Analytics (CMA), and cover weekly (Wednesday) ask, mid and bid quotes of CDS contracts

over the period from January 2008 to December 2013.7 Our sample is therefore of particular

interest as it covers the 2008-2009 global crisis and the bulk of the Euro debt crisis.

Table 1 presents summary statistics of the five-year CDS mid quotes. The average sovereign

CDS spreads range from 43 basis points for Germany to 221 basis points for Spain, whereas

they are 80 and 213 basis points for France and Italy, respectively. The average spreads for

German banks range from 112 basis points for DZ Bank to 206 basis points for HSH Nordbank.

For French banks, they range from 122 basis points for BNP Paribas to 185 basis points for

5Note that, instead of using Groupe BPCE, we use its investment bank, Natixis, for which the term
structure of CDS premia is available. Also note that the same set of banks is included in the latest Financial
System Stability Assessments (FSAP). The FSAP is a comprehensive in-depth assessments of a country’s
financial sector carried out by the International Monetary Fund and the World Bank. The only exception is
Groupe Credit Mutuel, which is included in the French FSAP but not in the EBA stress test.

6Eurozone sovereign CDS contracts are also available in euros. However, these contracts leave the protection
buyer exposed to currency risk, i.e. depreciation of the euro, in the event of sovereign default. For this reason,
euro-denominated CDS contracts for European sovereigns are substantially less liquid than dollar-denominated
contracts. In contrast, European banks’ CDS contracts are generally denominated in euros.

7CMA database quotes lead the price-discovery process in comparison with the quotes provided by other
databases (Mayordomo, Peňa and Schwartz, 2010).
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Natixis. For Italian banks, they range from 199 basis points for Intesa Sanpaolo to 329 basis

points for Banco Popolare, and for Spanish banks, from 201 basis points for Banco Santander

to 401 basis points for Banco Popular Espanol. Therefore, there is substantial cross-sectional

variability in the average credit risk of the banks within each country. More fundamentally,

the sovereign credit risk of Germany and, to a lesser extent, of France is sensibly lower than

the credit risk of any of their domestic banks included in our sample. In contrast, the sovereign

credit risk of Italy and Spain seems to be more closely related to the credit risk of the domestic

banks. In fact, some of the largest Italian and Spanish banks, such as Intesa Sanpaolo, Banco

Santander and BBVA, trade on average at lower CDS spreads than the domestic sovereign.

Moreover, the median CDS premia of both sovereign and bank CDS premia are slightly

lower than the mean premia, with the only exception of Spain and a few of Spanish banks.

Italian and Spanish sovereign spreads also display more variation, ranging from a minimum

of 25 and 24 basis points to a maximum of 577 and 617 basis points, respectively. A similar

pattern holds for their banks. In fact, the spreads for Banco Popolare range from a minimum

of 69 basis points to a maximum of 951 basis points, and the spreads for Banco Popular

Espanol range from a minimum of 92 basis points to a maximum of 926 basis points. In terms

of the autocorrelation statistics, sovereign CDS premia are highly autocorrelated (roughly

0.98). Moreover, sovereign CDS premia tend to be more autocorrelated than the bank CDS

premia (see, e.g., Germany and France), which are also highly autocorrelated.

We present the average term structures of the CDS mid quotes in the Internet Appendix.

The average term structures are generally upward sloping. However, the shape of the term

structure is convex, with the distance between the five- and one-year spreads being substan-

tially greater than the distance between the ten- and five-year spreads. This stylized fact

contrasts with the inspection of the bid-ask average term structures, which are generally ei-

ther downward sloping or hump shaped. This evidence confirms the limited liquidity of the

one-year contract (Pan and Singleton, 2008). However, despite its limited liquidity, the in-

clusion of the one-year contract is important, as this contract promptly reacts to episodes

of strongly enhanced risk, which can result in the inversion of the term structure. Finally,

sovereign CDS contracts are generally more liquid than bank CDS contracts, with one-year

bid-ask spreads being of comparable magnitude to those of the other maturities for Germany

and Spain.

4 Model Estimation and Inference

The main objective of this study is to determine banks’ exposures to the different sources

of sovereign credit risk. We do so by implementing a two-stage estimation procedure. In

the first stage, we estimate a multivariate reduced-form credit model on the sovereign CDS

premia, using the two-factor specification described in Section 2. Similar to Ang and Longstaff
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(2013), this enables us to identify two sources of sovereign credit risk: systemic and country

specific. In the second stage, we estimate each bank’s exposure to Eurozone systemic and

country sovereign risk, the idiosyncratic intensity, and the parameters driving its dynamic

under P and Q. We propose a Bayesian estimation method, which is particularly suitable for

continuous time models (Johannes and Polson, 2009), and builds on the algorithm developed

by Li and Zinna (2013).

4.1 State-Space Representations

A natural way to proceed is to cast our model into a state-space framework. We first focus

on the state space of the sovereign multivariate model (stage one), we then move to the state

space of the individual banks (stage two). The discretized transition equations, based on the

standard Euler scheme applied to a small time interval τ , take the form of:

St = ητ + (1− κPτ)St−τ + σ
√
τSt−τbt, (12)

Ct,i = ηiτ + (1− κPi τ)Ct−τ,i + σi
√
τCt−τ,iwt,i, (13)

where bt and wt,i are mutually independent standard normal noises. Thus, there are five

transition equations, of which one is systemic and four are country specific. Then, for a generic

sovereign i, we collect mid-quote CDS prices for the 1-, 3-, 5-, 7- and 10-year maturities at

each time t, and stack them in the vector CDSobst,i . Thus, the observation space for sovereign

i at time t is given by:

CDSobst,i = f
(
St, Ct,i, θ

Q, θQi , αi
)

+ εt,i, εt,i ∼ N (0,Σt,i) , (14)

where f(·) is the two-factor CDS pricing function, which depends on the systemic and country

sovereign intensities, the risk-neutral parameters θQ = [η, κQ, σ] and θQi = [ηi, κ
Q
i , σi], and the

sovereign exposure (αi).
8 The CDS contract of maturity M of sovereign i is assumed to

be priced with normally distributed errors with a mean of zero and a standard deviation of

σε,i |Bidt,i(M)− Askt,i (M)|. Therefore, the parameter σε,i is common across maturities and

measures the degree of model mispricing relative to the observed bid-ask spreads. Thus, Σt,i is

a diagonal matrix with pricing-error variances on the diagonal entries that vary over time and

across maturities with the bid-ask spreads. This is an important feature of the model, as there

is strong evidence that liquidity varies across maturities, such that it is particularly scarce at

the 1-year maturity and somewhat less scarce at the 10-year maturity. Moreover, making the

variance dependent on the bid-ask spreads allows us to account for the possibility that the

fit of our model deteriorates during times of market turmoil when liquidity drops and bid-ask

8The pricing of the CDS premia based on the multivariate model described in equations (4)-(6) closely
follows Ang and Longstaff (2013) and Li and Zinna (2013). To economize on space, we refer the reader to
those studies.
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spreads consequently widen. A similar specification for the pricing error variance is also used

by Pan and Singleton (2008). In sum, the measurement space stacks together the measurement

equations of the four sovereigns CDSobst =
[
CDSobst,GER,CDSobst,FRA,CDSobst,ITA,CDSobst,ESP

]
, so that

20 sovereign CDS prices are collected at each time t.

We now move on to describing the state-space representation of the second-stage estima-

tion. The second-stage estimation is carried out bank by bank. As a result, the dimensionality

of the measurement space decreases substantially, as it only includes the term structure of the

CDS mid quotes of the focal bank. However, there is an additional transition equation that

describes the evolution of the bank’s idiosyncratic intensity. As a result, the pricing is now

based on the three-factor pricing function s(·), as described in Appendix A. Specifically, the

measurement space for bank (i, j) is given by:

CDSobst,i,j = s
(
St, Ct,i, It,i,j, θ

Q, θQi , θ
Q
i,j, αi,j, γi,j

)
+ εt,i,j, εt,i,j ∼ N (0,Σt,i,j) , (15)

where θQi,j = [ηi,j, κ
Q
i,j, σi,j] are the risk-neutral parameters driving the dynamics of (It,i,j), and

Σt,i,j is the measurement error variance-covariance matrix, which has a diagonal form and

varies over time. The standard deviation associated with the observed CDS quote of maturity

M is σε,i,j |Bidt,i,j(M)− Askt,i,j (M)|. Finally, the additional transition equation is:

It,i,j = ηi,jτ + (1− κPi,jτ)It−τ,i,j + σi,j
√
τIt−τ,i,jzt,i,j, (16)

where zt,i,j is a standard normal noise.

4.2 Identifying Restrictions

In order to avoid the identification problem, we follow Ang and Longstaff (2013), in that we

normalize the German exposure to the systemic intensity to unity (α = 1). This restriction

effectively rescales the other sovereigns’ systemic exposures, such that αi provides information

on the probability that sovereign i will default in the event of a systemic shock relative to

the probability that Germany defaults. However, in contrast to Ang and Longstaff (2013), we

allow Germany to default not only in the event of a systemic shock but also in the event of a

sovereign-specific shock, in line with the other sovereigns.9 In this way, we can also investigate

the exposure of German banks to the credit risk of the domestic sovereign.

In the second stage, no further identification restriction is required. Bank exposures to

systemic risk (αi,j) provide information on the bank’s default probability relative to the prob-

ability that Germany will default in the event of a systemic shock. Similarly, the country

9To implement this richer specification while still guaranteeing that the model is identified, we find that it
is useful to fix the systemic sigma (σ). We do this by fixing the systemic sigma to the value resulting from
a preliminary estimation of the model based on the same identifying restrictions found in Ang and Longstaff
(2013).
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exposure (γi,j) provides information on the bank’s probability of defaulting relative to the

probability that the domestic sovereign i will default in the event of a country shock.

Finally, we assume a constant risk-free interest rate, similar to Pan and Singleton (2008)

and others, which substantially simplifies the pricing of the CDS. We also fix the risk-neutral

loss rate given default at 50%, i.e. RQ = 0.50 (see, e.g., Li and Zinna, 2013).

4.3 Bayesian Inference

Bayesian methods allow us to approximate the posterior distribution of parameters and states

given the entire set of observations, p(Θ, X|D), where Θ denotes the parameters, X denotes

the latent states, and D = {CDSobst }Tt=1 denotes the data. Direct sampling from the posterior

distribution p(Θ, X|D) is often not possible due to its complicated form. However, Markov

Chain Monte Carlo (MCMC) methods allow us to simulate using simpler conditional distri-

butions. Specifically, according to the Bayes’ rule, the posterior density can be decomposed

such as:

p(Θ, X|D) ∝ p(D|X,Θ)p(X|Θ)p(Θ), (17)

where p(D|X,Θ) denotes the likelihood function conditional on the states and the parameters;

p(X|Θ) is the density of states conditional on the parameters; and p(Θ) is the prior density

of the parameters. We can then iteratively draw from the full conditionals p(Θ|X,D) and

p(X|Θ, D). Conveniently, the parameter set Θ and the state set X can be further broken into

smaller blocks.

The first-stage estimation closely follows Li and Zinna (2013). There are, however, two

differences worth mentioning. First, Li and Zinna (2013) use an identification strategy similar

to Ang and Longstaff (2013). Second, they assume that the pricing-error volatility is constant

over time and equal across maturities. With these differences in mind, the main steps of the

MCMC estimation are as follows. First, we draw the parameters conditional on the data

and the states. The objective mean-reversion parameters κP and κPi and variances of mea-

surement errors σ2
ε and σ2

ε,i have conjugate priors with normal and inverse Gamma posterior

distributions, respectively. Thus, we can sample directly from their posterior distributions

using the Gibbs sampler. In contrast, we use the slice-sampling method proposed by Neal

(2003) to draw the rest of the parameters, as it is not feasible to sample directly from their full

conditional posterior distributions. We then draw the latent states individually, conditional

on the parameters and the data. As the posterior distributions are again non-standard, we

again use the slice-sampling method. As a result, we use a hybrid MCMC algorithm that

combines the Gibbs sampler with a series of slice-sampling steps. Samples of draws are then

obtained by repeatedly simulating from the conditional distribution of each block in turn. It is

standard to treat these draws (beyond a burn-in period) as variates from the target posterior
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distribution.10

In the second-stage we estimate separately for each bank (i, j) its latent intensity It,i,j; the

associated risk-neutral parameters θQi,j = [ηi,j, κ
Q
i,j, σi,j]; the objective mean reversion κPi,j; the

systemic, αi,j, and country-specific, γi,j, sovereign exposures; and, the pricing-error volatility

σε,i,j. We draw these parameters and states in fashion similar to that seen in the first stage.

The key difference is that we draw these parameters conditional on the parameter and state

estimates of the first stage.

Bayesian estimation methods are particularly suitable for continuous-time financial models

(Johannes and Polson, 2009). They allow us to simultaneously estimate model parameters and

latent factors, and to quantify the uncertainty around the estimates. We can, for example, eas-

ily quantify the noise that first-stage estimates induce entering the second-stage estimation.11

Moreover, post-estimation calculations, such as the distress risk premia, are based on highly

non-linear functions of the estimated parameters. Notably, it is relatively straightforward to

quantify the uncertainty around these estimates in a Bayesian context, while it is relatively

complicated in a frequentist context (Bauer, 2011).

4.4 Parameter Estimates

First-stage Estimates. We now present the parameter estimates and discuss the model fit.

Table 2 reports the estimates of the parameters driving the systemic (Panel A) and country-

specific intensities (Panel B) that result from the first-stage estimation. The mean reversion

parameters under the risk-neutral measure are negative. This is not an uncommon feature

in term-structure models, and it does not pose a problem, as the mean reversion parameters

under the objective measure are positive, indicating that the processes are indeed stationary

under the objective measure. Notably, the speeds of mean reversion under the objective (risk-

neutral) measure increase (decrease) with the credit risk of the sovereign, i.e. the speeds of

mean reversion are 1.43 (-0.69) for Germany and 0.39 (-0.30) for Spain. This evidence suggests

not only that a credit risk premium is priced into the Eurozone sovereign CDS premia, but

also that this premium is a particularly important driver of less risky sovereign CDS premia.

10The priors used in this study are diffuse, and their distributions are chosen for convenience using a number
of earlier papers (e.g., Johannes and Polson, 2009). With regard to the computational details, we perform
40,000 replications, of which the first 20,000 are burned-in. We then save 1 of every 10 draws of the last 20,000
replications of the chain so that the draws are independent.

11In our study, the sovereign credit model is embedded within the bank credit model. For this reason, it is
convenient to estimate the model in two stages. However, the second-stage estimator includes noise induced by
the first-stage estimates (both states and parameters in our case). Therefore, to further investigate this issue,
we estimated the second-stage parameters, taking the noise around the parameters estimated in the first stage
into account. We did so by repeating the estimation of the second-stage parameters for each of the retained
draws. We then used the resulting distribution of the estimates to quantify the impact of the noise around
the first-stage estimates on the second-stage estimates. Overall, we found that the impact is limited. This
is because the first-stage parameter estimates, which enter the second-stage estimation, are estimated rather
precisely. In fact, the only parameters displaying large confidence intervals are the κP parameters, which do
not enter the second-step estimation. The results are available upon request.
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The systemic intensity also commands a particularly large risk premium, given that the risk-

neutral and objective speeds of mean reversion are -0.48 and 1.33, respectively. Also notable is

that the parameters are estimated very precisely, with the exceptions of the objective speeds

of mean reversion parameters, which are notoriously hard to estimate, especially for rather

short samples.

The analysis of the measurement standard deviations is indicative of the goodness-of-fit

of the model. However, it is worth emphasizing that these parameters determine the degree

of model mispricing relative to the observed bid-ask spreads. For this reason, we complete

the investigation of the model fit by looking at the mean absolute pricing errors (MAPE) and

the mean absolute percentage pricing errors (MAPPE), which are presented in the Internet

Appendix. As they control for the level of the CDS premia, the MAPPEs help us compare

pricing errors across maturities and sovereigns. We find that the model prices the 5-, 7-

and 10-year maturities particularly well, and that it prices 3-year maturity well with the

exception of Germany. Specifically, the MAPPE (MAPE) for the five-year contract ranges

from a minimum of 2.9 percent (4.5 basis points) for Spain to a maximum of 9.6 percent (3.9

basis points) for Germany. The pricing of the one-year contract is relatively poor, which is

consistent with a number of previous studies. This may be due to its relatively low liquidity,

as also reflected by its relatively large bid-ask spreads.

Second-stage Estimates. The parameter estimates of the individual bank-idiosyncratic

intensities in the second stage are generally in line with the first-stage estimates (see the

Internet Appendix). That is, the parameters are precisely estimated, the intensities are sta-

tionary under the objective measure, and there is evidence of a risk premium attached to

the idiosyncratic intensity. However, there are also some important differences. For a consid-

erable number of banks, the idiosyncratic intensity is also stationary under the risk-neutral

measure. Moreover, the distance between the objective and the risk-neutral mean reversion

parameters of the idiosyncratic intensities is generally smaller than the distance between the

objective and the risk-neutral mean reversion parameters of the systemic and country-specific

sovereign intensities. Taken together, these results suggest not only that there is a risk pre-

mium associated with each component, but also that the properties of these risk premia can

vary considerably. The term structure of the risk premia components is carefully analyzed in

Section 6.

The pricing-error statistics, also found in the Internet Appendix, largely conforms to the

considerations raised relative to the first-stage estimation. However, it is worth noting that

the MAPPEs of the sovereigns are smaller than those of the domestic banks, which holds for

every maturity. The only exception is Germany.
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5 Sovereign and Bank Credit Risk

In this section, we first present the sovereign risk estimates, focusing on the systemic and

country sovereign intensities. We then analyze individual banks’ exposures to systemic and

country-specific sovereign risk. We relate the cross section of individual banks’ exposures to:

bank size; holdings of domestic and non-domestic sovereign debt, and the associated sovereign

domestic and non-domestic subsidies; and the expected government support. We complement

this analysis with a discussion of the results.

5.1 Sovereign Credit Risk

Systemic Credit Risk. Figure 1 presents the time-series estimate of the systemic sovereign

intensity (St) with the 95% confidence intervals, showing that the intensity is estimated very

precisely. It is evident that four distinct phases characterize the evolution of sovereign systemic

risk, and that the main turning points are largely associated with a few political events (dotted

lines).12

The first phase shows an initial subdued reaction of systemic sovereign risk to the onset

of the crisis, which was largely located in the US mortgage market. This calm period ends

with Lehman’s default and the introduction of the system-wide rescue packages by European

governments.13 Thereafter, systemic sovereign risk rises steadily, reaching its peak of 30

basis points around the time the US authorities announce a series of initiatives, such as the

Troubled Asset Relief Program (TARP). The turning point coincides with the introduction of

the Term Asset-Backed Securities Loan Facility (TALF). Then, the G20 agrees to treble the

resources available to the IMF to $750 billion, which helps consolidate the drop in systemic

risk. Therefore, the first period essentially spans the 2008-2009 financial crisis.

The second phase, which starts in the late 2009, brings a shift in focus from the US

to the Eurozone’s public finances. In particular, the sudden increase in systemic risk stops

with the introduction of the first austerity package for Greece. However, this drop in systemic

credit risk is short lived. The introduction of the European Financial Stability Facility (EFSF)

impedes the acceleration of systemic sovereign risk. However, only when the European finance

ministers replace the EFSF with a permanent bailout fund for the region of e500 billion, which

is called European Stability Mechanism (ESM), does the systemic sovereign risk finally fade.

The third phase starts in the summer of 2011 with an unprecedented spike in the systemic

intensity of around 50 basis points. The increase stops around the time that Spain passes

a constitutional amendment regarding a “golden rule”, which aims to keep future budget

12The introduction of new policies by domestic and international authorities can affect asset prices, and
therefore the risk perceived by investors, by resolving the uncertainty. This result is therefore consistent
with the emerging literature that links political uncertainty to stock prices and the price of risk (Pastor and
Veronesi, 2012, 2013; David and Veronesi, 2014; and, Kelly, Pastor, and Veronesi, 2014).

13See Panetta et al. (2009) for an assessment of financial-sector rescue programmes.
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deficits within a strict limit. Around the same time, Italy passes a e50 billion austerity

plan to balance the budget by 2013. However, in the second half of 2011, fear that Europe’s

sovereign debt crisis is spiraling out of control begins to emerge. In fact, our systemic risk

intensity reaches its sample maximum value of roughly 70 basis points in November 2011.

This, in turn, supports the anecdotal evidence that the tensions became systemic around

this time. In response to this heightened tension, the European Central Bank announces

the introduction of the Longer-term Refinancing Operations (LTRO), and the fiscal pact first

agreed in December is finally signed off in January 2012. These actions prove effective in that

the market perception of systemic risk consequently drops. Furthermore, the Greek parliament

passes an unpopular austerity bill in February 2012, which might also contribute to the drop

in systemic sovereign risk. All in all, these measures contribute to temporarily attenuating

the comovement in sovereign credit risk, which rebounds soon thereafter. However, only with

Mario Draghi’s “Courageous Leap” speech in May 2012, the “Whatever It Takes” speech in

July, and the introduction of the Outright Monetary Transactions (OMT) in August, does

systemic sovereign risk, as priced by the CDS market, finally vanish.

The fourth OMT phase, which spans the period from September 2012 to the end of the

sample in December 2013, is characterized by investors no longer pricing systemic sovereign

risk.

Systemic Sovereign Exposures. We now turn to the cross-sectional dimension of sovereign

systemic risk. We do this by first presenting the systemic exposures (αi), as reported in Table

2, which indicate sovereign i ’s probability of defaulting in conjunction with a systemic shock.

However, recall that the systemic exposure of Germany is fixed at one, as described in Section

4.2. As a result, αi denotes the ratio of the conditional systemic probability of default of

sovereign i to that of Germany. In short, sovereigns’ systemic exposures are re-scaled with

respect to the systemic exposure of Germany. France, for example, has a systemic exposure

of 2.56, which indicates that France has a probability of defaulting that is roughly two and

a half times higher than that of Germany in the event of a systemic shock. Italy and Spain

display systemic exposures of 5.96 and 6.01, respectively. Therefore, Italy and Spain have the

highest probabilities to default in the event of a systemic shock. This result is consistent with

anecdotal evidence suggesting that the tensions became systemic in the summer of 2011 as

they spread to the Italian and Spanish government securities (Angelini, Grande, and Panetta,

2014). In fact, not only do Italy and Spain display the highest systemic exposures, but the

systemic sovereign intensity also reaches its highest values in the summer of 2011.

At this stage, it is instructive to compare our results on systemic sovereign risk with those

of Ang and Longstaff (2013). First, Ang and Longstaff’s (2013) estimated systemic exposures

for France, Italy, and Spain are 0.93, 1.71, and 1.51, respectively. Second, their systemic

sovereign intensity reaches its peak in the 2008-2009 crisis, while it has much lower values

when the crisis evolves into a sovereign debt crisis. Therefore, their estimates seem to reflect
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the impact of the US crisis on Europe rather than the impact of the Eurozone’s debt crisis.

This is also suggested by the similar behavior of the sovereign systemic intensities for the US

and Europe. This is may be due to the fact that they focus on a much shorter sample, which

is dominated for two-thirds by the 2008-2009 crisis. In addition, they consider a much larger

number of countries, whereas we focus on a smaller, but systemically important, group of

countries.14

Moreover, our estimated systemic sovereign intensity is remarkably different from the sys-

temic bank intensity presented by Li and Zinna (2013), which is estimated separately on a

panel of seven large US and UK banks. Taken together, these results seem to provide a

first piece of evidence, which will be complemented with the subsequent analysis, that our

estimates well reflect the systemic risk of the Eurozone sovereigns.

As also noted by Li and Zinna (2013), the systemic exposures seem to largely reflect the

credit risk of the sovereign, as proxied, for example, by the average five-year CDS spread over

the period. We therefore complement the analysis by looking at the systemic intensity weight

(SIW), i.e. αiSt/(αiSt + Ct,i), whereby systemic risk is standardized by the total risk of the

sovereign, and it is, therefore, comparable across sovereigns with different credit risks. SIW

summary statistics are displayed in the bottom panel of Table 2. Interestingly, we find that

the ordering of the systemically important banks changes remarkably when moving from the

systemic exposures to the SIWs. In fact, the systemic component explains, on average, 66.2%

and 69.7% of the credit risk of Germany and France, respectively, but only 48.5% and 44.4%

of the credit risk of Italy and Spain, respectively. The strong variability displayed by the

SIWs, which range from 0 to almost 100%, is also striking.

Country Credit Risk. Figure 2 shows the country sovereign intensities (Ct,i) along with the

scaled systemic sovereign intensities (αiSt), which are the building blocks of the SIWs, for each

country. First, we note that a small but significant component of the credit risk of Germany is

country specific, which supports our identification strategy. However, the country component

is generally much lower than the systemic component until the drop in systemic risk following

the “Whatever It Takes” speech by Mario Draghi. Moreover, as the tensions become systemic

in the summer of 2011, country risk drops to zero, and German credit risk is entirely explained

by the systemic component. The evolutions of the systemic and country sovereign intensities

of France largely mirror those of Germany, although the French intensities take much higher

values. Of further note is that while there is an increase in the country credit risk of Germany

at the peak of the 2008-2009 crisis, such an increase is not evident for France.

In contrast, country credit risk is an important, and often dominant, driver of credit risk

in Italy and Spain. However, there are also important differences between the two countries.

14As mentioned earlier, we also estimated the our model using the Ang and Longstaff (2013) specification
such that Germany can only default during a systemic credit event. The estimated exposures using their
identification are similar to those estimated using our identification strategy. In addition, the evolution of the
systemic intensities is similar. Therefore, the identification strategy does not drive the differing results.
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For example, Italy’s country credit risk rises in conjunction with the increase in the systemic

intensity, in the aftermath of Lehman’s bankruptcy. This early increase in country credit risk

is specific to the Italian sovereign, as it is not priced into the other country CDS premia.

Moreover, the increase in Italian country credit risk during the second phase, starting with

the first bailout package for Greece, is limited. At that time Italian credit risk is largely

driven by its systemic component. Then, a sudden increase in country credit risk leads the

remarkable increase in systemic credit risk at the start of the third phase in the summer of

2011. Country risk and systemic risk then seem to co-move roughly until the time the Greek

parliament passes the austerity bill in February 2012. At this time the drop in systemic

risk is attenuated, in part, by an increase in country risk. Country credit risk then makes a

remarkable downward jump following Mario Draghi’s speech, so that the drop in the Italian

CDS spreads is driven by both components.

We now turn to the case of Spain. One key difference between Spain and Italy is that during

the second phase, Spain’s credit risk is equally due to its systemic and country sovereign com-

ponents. Furthermore, as systemic risk wears off at the beginning of 2011, country sovereign

credit risk instead picks up, and this rise is persistent, ending only in September 2011, when

systemic risk becomes the main driver of the rise of Spanish CDS spreads. Moreover, the

sudden drop in systemic risk in February 2012 is offset by the rise in country credit risk.

Therefore, during this event, the remarkable drop in systemic credit risk drives the drop in

the CDS premia of Germany and France, but this drop is partly offset in Italy and completely

in Spain by an increase in country credit risk. Around the time of Mario Draghi’s speech in

May 2012, country credit risk is about twice as high as systemic credit risk in Spain. However,

similar to Italy, in the aftermath of the second speech by Mario Draghi, both systemic risk and

Spanish country risk decrease remarkably in the aftermath of Mario Draghi’s second speech.

5.2 Bank Credit Risk

Table 3 presents the estimates of individual bank exposures to systemic and country sovereign

risk. We also report the country averages of the bank exposures. Recall that systemic exposure

αi,j denotes the ratio of the conditional probability of default of bank (i,j ) to that of Germany

in the event of a systemic sovereign shock (St). The average systemic exposure of Spanish

banks is, by far, the largest (4.60), while that of German banks is the lowest (1.63). Also

interesting is the fact that, even though Italian banks display average CDS spreads that

are similar to those of Spanish banks, the systemic exposure of the average Italian bank is

substantially lower (1.95). The average systemic exposure of French banks is also particularly

high (2.84).

Nevertheless, riskier banks tend to have higher systemic exposures. For this reason, we

again construct the SIW, which is computed as αi,jSt/(αi,jSt + γi,jCt,i + It,i,j) for banks. It

follows that systemic risk, on average, explains the largest fraction of French banks’ credit risk
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(30%), which can reach a maximum of 81%. Italy is at the other extreme, as systemic risk,

on average, only explains 11% of banks’ credit risk, reaching a maximum of 39%.15 Systemic

credit risk explains roughly 16% and 21%, respectively, of German and Spanish banks’ credit

risk.

Table 3 also shows individual banks’ exposures to country sovereign credit risk (γi,j), de-

noting the ratio of the conditional probability of default of bank (i, j) to that of the domestic

sovereign i in the event of a country-specific sovereign shock (Ct,i). The average country

exposures of German and French banks are larger than unity, as they are respectively 1.60

and 1.74. This indicates a higher probability of defaulting than the domestic sovereign in

the event of a country sovereign shock. In contrast, Italian and Spanish banks have roughly

the same average country exposures at 0.54 and 0.56, respectively. However, Figure 2 reveals

that the German and French country sovereign intensities are much smaller than the Italian

and Spanish intensities. Thus, it is natural to wonder what fraction of banks’ credit risk is

explained by country sovereign risk. We answer to this question by constructing the coun-

try intensity weights, CIW = γi,jCt,i/(αi,jSt+ γi,jCt,i+I t,i,j), which therefore complement the

analysis of the SIWs. Interestingly, country risk explains, on average, a similar fraction of

Spanish (23.6%), Italian (18.4%), and French (17.0%) banks’ credit risk, whereas it is only

7.2% of German banks’ credit risk.

Taken together, these results show that sovereign credit risk, on average, accounts for

roughly 45% of the credit risk of French and Spanish banks, 30% of the credit risk of Italian

banks, and 23% of the credit risk of German banks. However, fundamentally the results

support our conjecture that banks are exposed to both systemic and country sovereign risk.

Figure 3 shows the decomposition of bank credit risk into its systemic, country, and id-

iosyncratic components over time (country averages). A few considerations are in order. First,

at the start of the 2008-2009 crisis, bank credit risk is largely idiosyncratic. Then, the crisis

deteriorates with Lehman’s bankruptcy. In response, the European governments introduce

system-wide measures to rescue the banking sectors (dotted lines in Figure 3). As a result,

in October 2008, sovereign risk explains roughly 50% of banks’ credit risk, on average, across

countries, ranging from 40% for German banks to 68% for French banks. This evidence,

coupled with the visual inspection of Figure 4, which shows the country averages for scaled

systemic, scaled country and idiosyncratic intensities, seems to confirm that credit risk is

transferred from the banks to the sovereigns with the introduction of the system-wide rescue

programmes. In fact, around October 2008, the increase in sovereign risk, as reflected in the

systemic intensity in particular, seems to be associated with a drop in the bank-idiosyncratic

intensities. This is particularly evident for French, Italian and Spanish banks. In contrast, the

idiosyncratic credit risk German banks is still rising when sovereign risk also starts its sudden

15Note that this result for Italian banks is largely driven by Intesa Sanpaolo and Unicredit, which display
null exposures to systemic risk. The remaining banks display exposures that range from 2.98 and 3.41, which
result in SIWs comparable to those of the other European banks.
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rise. Overall, our results seem to fit with the timeline of the 2008-2009 crisis suggested by

Acharya, Dreschsler, and Schnabl (2013).16

An inspection of Figure 3 also highlights the fact that since the announcement of the

Greek rescue package, sovereign credit risk captures a substantial and rather stable share

of French and Spanish banks’ credit risk. In contrast, the fraction of idiosyncratic bank

credit risk in Germany and Italy is high throughout the sample. However, for Italian banks,

country sovereign credit risk explains a large fraction of banks’ credit risk starting as early as

October 2008. In contrast, country sovereign credit risk only begins to play a significant role

in explaining German and French banks’ credit risk in late 2009.

5.3 Cross-Sectional Analysis of Bank Exposures

Thus far, we have presented the estimated individual bank systemic and country exposures to

sovereign risk. We now try to relate those exposures to a number of measures that are likely

to be important for explaining cross-sectional differences in banks’ sovereign exposures. We

do this by undertaking a series of cross-sectional regressions.

Bank Size. Indicators of financial institutions’ systemic exposures, such as the SRISK,17,

tend to combine the information implied in the probabilities of default with the loss, or capital

shortfall, in the event of default. Not surprisingly, the resulting rankings reveal that size is a

key determinant of the bank’s systemic importance.18 In fact, the largest institutions generally

score also as the most systemically important institutions.

Large banks benefit from “too-big-to-fail” subsidies, which reduce the bank risk and, in

turn, imply a lower cost of funding (Laeven, Ratnovski, and Tong, 2014). However, this

implicit subsidy can increase the exposure of larger banks to the financial system, thereby

increasing their systemic exposure. The introduction of the euro increased the exposure of

global (large) European banks to most of the peripheral countries of the Eurozone, and, thus,

to the Eurozone tail risk (Noeth and Sengupta, 2012).19

16Acharya et al (2013) identify three periods. During the first period, sovereign CDS premia remained low,
despite the sustained deterioration in bank credit risk. This may reflect the fact that the market did not
expect the government to step in or did not fully price in the expected transfer of credit risk in the event of
bank bailouts. This period ends in conjunction with the announcement of the first bank bailouts. The second
period covers the bank bailouts, and the consequent shift of credit risk from the banks to the sovereign. A
high level of comovement between sovereign and bank CDS spreads characterizes the third phase.

17SRISK is based on the marginal expected shortfall of Brownlees and Engle (2012) and Acharya, Pedersen,
Philippon, and Richardson (2010).

18Size also correlates with other standard categories on which the assessment of systemically important
institutions is based (Laeven, Ratnovski, and Tong, 2014). Moreover, compared to these other categories,
size is readily available and is easy to use. For example, the other categories used by the Basel Committee
(BIS, 2013), which include cross-jurisdictional activity, interconnectedness, substitutability, and complexity,
are more difficult to access, with some of that data being unknown to the market. As a detailed description
of these different indicators is beyond the scope of this study, we refer the reader to the survey of Bisias et al.
(2012).

19It is also worth emphasizing that, in the presence of a naked CDS ban for sovereign CDSs, investors are
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A natural question, therefore, is whether there is a link between bank size and the type of

bank credit risk. Put simply, do larger European banks display a larger fraction of systemic

(or country) credit risk? In attempting to answer to this question, it is key that bank size

is not used as an input in the construction of bank systemic exposure measure. This clearly

occurs in our case, as our measures of systemic risk are based on market prices rather than

on balance-sheet data. Specifically, we perform cross-sectional regressions of the time-series

averages of SIW and CIW on bank size (Table 4).20

We measure bank size in terms of the total assets of the bank relative to domestic GDP.21

Interestingly, we find that bank size is statistically significant at the 5% in the SIW regression,

and at the 1% in the CIW regression. Therefore, both fractions of banks’ sovereign credit risk

– systemic and country specific – increase with bank size, so that larger banks display less

idiosyncratic credit risk, as suggested by Laeven, Ratnovski and Tong (2014). In contrast,

smaller banks display higher average CDS premia, and their credit risk is largely bank specific.

Holdings of Sovereign Debt. Banks’ holdings of domestic and non-domestic European

sovereign debt determine their direct exposures to sovereign risk (e.g. Bolton and Jeanne,

2011; Acharya, Dreschsler, and Schnabl, 2013; Acharya and Rajan, 2013; and, Gennaioli,

Martin, and Rossi, 2013). In contrast, our estimates are extracted from asset prices and

should therefore capture the overall - direct and indirect - bank’s exposure to sovereign risk.

Thus, it is worth investigating to what extent our measures correlate with measures of banks’

direct exposures to sovereign risk, such as holdings of sovereign debt. Our premise, therefore,

is that the SIW should increase in banks’ holdings of non-domestic sovereign debt, whereas

the CIW should increase in banks’ holdings of domestic sovereign debt.22 We find strong

buying protection on European banks on the basis that banks and sovereigns are so intimately linked that
any increased risk of a sovereign default will increase the value of a bank CDS in a way similar to a sovereign
CDS (Financial Times, 2013b). However, investors tend to hedge their exposures using large rather than small
bank CDS. In fact, investors’ hedging activity, or their bets against the sovereign, were particularly intense
in the iTraxx Senior Financial index, which is one of the most liquid European indices encompassing some of
the largest banks in the region.

20Here we aim to explore the relationship between bank size and the bank type of credit risk. We therefore
use the SIW (CIW) instead of the systemic (country) exposures αi,j (γi,j). Recall that the SIW and CIW are
standardized by the total credit risk of the focal bank, and are therefore readily comparable across banks of
different riskiness (see Section 5.2). The systemic exposures, in particular, seem to increase with the credit
risk of the bank, so that riskier banks display a higher probability of defaulting in the event of a systemic
crisis. Also note that we run the analysis cross sectionally, as the key ingredients of the SIW and CIW are the
respective exposures, which are constant over time.

21We match the time series averages of the 2008-2013 SIW and CIW with the averages of bank size over
the 2007-2012 period to account for the delay with which balance-sheet variables are released to the market.
Also note that the results are robust to not standardizing total assets by GDP.

22Individual banks’ holding of domestic and non-domestic sovereign securities are collected by the EBA
as part of the stress-testing and capital exercises that were conducted and published by the EBA. However,
the EBA data are reported at infrequent intervals and for only five reporting dates. As noted earlier, this
is not a major concern, since we are interested in explaining the cross section of banks’ sovereign exposures
and the building blocks of the SIW and CIW are αi,j and γi,j , which are constants. Specifically, we use the
sovereign exposures, i.e. bank holdings of sovereign securities, of the 2011 EBA EU-wide stress test, which
were published in July 2011 and refer to the sovereign exposures as of December 31, 2010. Notably, the 2011
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statistical support for this hypothesis (Table 4). In economic terms, a one ebillion increase in

the holdings of domestic (non-domestic) sovereign debt is associated with an increase in the

CIW (SIW) by 0.26% (0.16%).

Sovereign Subsidy (“Zero Risk Weight”). Holdings of sovereign debt can determine

banks’ exposures to sovereign risk through a related channel resulting from the “zero risk

weight” regime. More precisely, a “zero risk weight” de facto applied to banks’ holdings of

Eurozone government debt, so that European banks were not required to maintain a capital

buffer against their holdings of sovereign debt issued by any EU member state (e.g. Angelini,

Grande and Panetta, 2014; Korte and Steffen, 2014). Observers deemed this regime to be an

implicit subsidy provided by the sovereigns to the banks, as the banks were required to hold

less capital for a given level of risk if they held Eurozone sovereign bonds. An unintended

consequence could be that, by incentivizing banks to hold Eurozone sovereign debt, this regime

could increasingly link the banks to the outlook not only of the domestic sovereign but also

of the Eurozone as a whole. We therefore test whether these domestic and non-domestic

sovereign subsidies relate to our estimated systemic and country exposures, CIW and SIW.

We follow Korte and Steffen (2014) in measuring the domestic and non-domestic subsidies,

by assigning to each holding of sovereign debt the appropriate EBA risk weight, i.e. the risk

weight that applies to a corporate bond of comparable rating.23 We find that both legs of

this hypothesis are strongly supported by data, as the domestic subsidy enters with a positive

sign in the CIW regression, and the non-domestic subsidy enters with a positive sign in the

SIW regression (Table 4).24

Expected Government Support. There is also an active stream of literature investigating

the link between the expected government support and asset prices (e.g. Noss and Sowerbutts,

2012; Tsesmelidakis and Merton, 2012; and Correa et al., 2014). For example, Correa et al.

(2014) find that banks expecting to receive government support display lower stock returns

after sovereign rating downgrades. However, this effect is not present when their measure of

expected government support is replaced with bank holdings of government debt. This in

turn suggests that the expected government support and bank holdings of government debt

may reflect different aspects of bank exposures to country sovereign risk. Our hypothesis is

EBA sovereign exposures well represent our sample, as they fall around the sample mid point.
23The implicit subsidy is constructed by assigning appropriate risk weights to the sovereign exposures

published in the 2011 EBA EU-wide stress test. We refer to Appendix D in Korte and Steffen (2014) for the
detailed description of the methodology.

24Also note that the domestic subsidy enters with a negative and statistically significant sign in the SIW
regression. Thus, the larger the domestic subsidy, the smaller (larger) the fraction of bank credit risk due
to systemic (country) sovereign risk is. In contrast, although the coefficient is not statistically significant,
the foreign subsidy enters with a positive sign in the CIW regression. This is consistent with the hypothesis
that a high non-domestic subsidy may intensify the bank’s exposure to the domestic sovereign (Korte and
Steffen, 2014). More specifically, in the event that non-domestic sovereign risk materializes, the bank is left
undercapitalized and the domestic sovereign will have to bail out the domestic bank. Fundamentally, this
mechanism also shows how sovereign risk can be transmitted within the EU member states.

25



that banks that expect more government support are more closely linked to the fortunes of

the domestic sovereign, and therefore more likely to default in the event of a country-specific

sovereign credit shock. Put simply, the greater the expected government support, the higher

the bank’s country exposure (γi,j) is.

The expected government support can be measured in a number of ways (IMF, 2014). In

this study, we follow the ratings-based approach of Correa et al. (2014), in which the expected

government support, i.e. the ‘uplift’, is measured as the bank’s ability to repay its deposit

obligations (all-in-all rating) minus the bank’s intrinsic safety and soundness (stand-alone

rating).25,26 The average uplift over the 2007-2012 period for our sample of large European

banks tends to decrease with the strength of the bank, while it increases with the strength of

the domestic government. This suggests that the market perceives the government support

provided by a government that is itself in difficulties as less credible or effective.

We first regress the cross section of bank exposures on the all-in-all credit rating. The

estimated coefficient is positive and statistically significant at the 10% level, which indicates

that banks with a higher deposit rating, i.e. safer banks, display higher country exposures

(Table 5). However, the all-in-all credit rating is composed of the uplift and the bank financial

strength rating. For example, a bank with an all-in-all credit rating of 13 and a stand-alone

credit rating of 11 benefits from an uplift of 2 notches. Thus, we repeat the regression for each

component in turn. We find that the uplift enters the regression with a positive coefficient,

which is statistically significant at the 10%. This supports our hypothesis that banks with a

higher expected support are more likely to default in the event of a country sovereign shock.

In contrast, we find no statistically significant link between the bank financial strength and

the country exposure. The results are robust to the inclusion of both components in the

regression, with the uplift becoming significant at the 5% level.27 We then repeat the analysis

by replacing the systemic exposure with the CIW as dependent variable. This alternative

specification, which is more in line with the regressions presented in Table 4, shifts back the

focus on what determines cross-sectional differences in the fraction of bank credit risk that

is due to country sovereign risk. The results change considerably (Table 5). In fact, CIW

increases with the strength of the bank, while it decreases with the uplift. But, when we

include both the strength of the bank and the uplift, we find that only the strength of the

bank is significant at the 5%.

25In line with Correa et al. (2014), we measure the all-in-all credit rating using Moody’s foreign-currency
deposit rating, which is assigned on a scale ranging from A to E, and the stand-alone credit rating using the
Moody’s bank financial strength rating, which is assigned on a scale from Aaa to Ca. The two types of ratings
are therefore expressed using different scales with a different number of notches. We therefore first map the
deposit-rating scale to the bank financial strength thirteen point scale. We then translate both ratings to the
1-13 numerical scale, such that the numbers increase with the safety of the bank.

26One caveat is that the uplift may not only reflect the expected support from the government, but also any
potential support from the parent bank. However, given that we only include parent banks in this study, the
uplift is a direct measure of the expected government support.

27The analysis is based on 20 banks, as we had to exclude one bank for which the rating has been withdrawn.
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In sum, these results suggest that banks with a higher expected government support have

higher country exposures, while safer banks have a larger fraction of country-specific sovereign

credit risk.

5.4 Discussion

A number of academic studies, such as Acharya, Dreschsler, and Schnabl (2013), have focused

on the two-way intimate nexus between sovereigns and banks. Shaky bank balance sheets can

compromise the solvency of the sovereign, which can, in turn, feed back to the banks’ balance

sheets (Weidmann, 2013). Ways of breaking this nexus are at the center of an active policy

debate (e.g. Angelini, Grande, and Panetta, 2014). A natural question, therefore, is the

extent to which our first-stage estimates reflect sovereign credit risk rather than bank credit

risk. Clearly, our first-stage estimates of sovereign credit risk can reflect the fragility of the

banking sector to some extent (see e.g. Reinhart and Rogoff, 2009). However, a number of

factors seem to suggest that our first-stage estimates largely reflect sovereign credit risk and

that our second-stage estimates, therefore, capture individual banks’ exposures to sovereign

risk.

First, in a number of countries, the crisis is caused by the fragility of the sovereign. In

other countries, it originates in the banking sector, then compromises the solvency of the

sovereign before eventually feeding back to the banks. However, while the fragility of the

banks is particularly evident during much of 2008, the subsequent transfer of credit risk

from the banks to the sovereign is concentrated in a particularly short period that follows

the introduction of the systemic-wide rescue programmes (Acharya, Dreschsler, and Schnabl,

2013). From that point on, the direction of the nexus in the Eurozone goes largely from

sovereigns to banks. As a result, roughly 80% of our sample is characterized by sovereign

fragility affecting both domestic and non-domestic banks.

Second, our estimates (see Sections 5.1 and 5.2) are generally consistent with the timeline

of the 2008-2009 crisis proposed by Acharya, Dreschsler, and Schnabl (2013). Moreover,

the evolution of systemic and country sovereign intensities fit with the anecdotal evidence

describing the evolution of sovereign risk, and the major political events, in the Eurozone

from 2008 through 2013. Furthermore, our estimates of systemic sovereign credit risk are

remarkably different from the estimates of systemic bank credit risk for the US and UK

presented by Li and Zinna (2013), even though they look at a similar time period and use a

model specification that closely resembles our first-stage modeling of sovereign risk.

Third, the comparison of bank and sovereign exposures, both systemic and country specific,

provides an additional indication that our first-stage estimates largely capture sovereign risk.

In fact, individual Italian and Spanish bank exposures to Euro tail risk are generally lower

than the exposures of the domestic sovereign. The Italian sovereign systemic exposure is much

larger than the exposure of any of the Italian banks, which suggests that the sovereign was the
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main source of fragility. For Spain, the evidence is mixed, but the Spanish sovereign’s systemic

exposure is larger than the systemic exposures of the Spanish largest banks. Of additional

note is that Italian and Spanish banks display exposures to country sovereign credit risk that

are less than unity, i.e. lower than the exposure of the domestic sovereign.28 In contrast,

German and French sovereigns have lower exposures to both types of sovereign shocks than

the domestic banks, which is in line with the original ‘sovereign ceiling’ hypothesis (Durbin and

Ng, 2005). More fundamentally, these estimates might also reflect the significant exposures

of French and German banks to the credit risk from peripheral Europe (Noeth and Sengupta,

2012).

Fourth, our estimates, which are based on the term structure of CDS premia, reveal the

market’s assessment of banks’ exposures to sovereign risk. These exposures can therefore

reflect not only the direct exposures of individual banks to sovereign risk, resulting from their

holdings of European sovereign debt, but also their indirect bank exposures. For example,

banks with fragile business models might be indirectly exposed to the sovereign debt crisis

irrespective of their holdings of sovereign securities. That said, the fact that the shares of bank

credit risk resulting from exposure to systemic and country sovereign credit risk are explained,

respectively, by banks’ holdings of domestic and non-domestic sovereign debt, constitutes

possibly the most compelling piece of evidence that our model accurately identifies sovereign

credit risk and its components.

Fifth, sovereign credit risk should not be the only source of comovement in banks’ credit

risk, as banks’ fortunes are linked beyond their common exposures to sovereign risk. For

example, Kallestrup, Lando, and Murgoci (2013) argue that the bulk of banks’ foreign expo-

sures are to the private sector and not to the sovereigns. Clearly, there are also other potential

sources of fragility that are common to the banks that might not pertain to the sovereign.29

This implies that if the first-stage estimation accurately captures sovereign risk instead of

bank credit risk, then the bank idiosyncratic-intensities of default, It,i,j, displayed in the In-

ternet Appendix, should co-move. We therefore perform a principal component analysis of

(the changes in) the bank-idiosyncratic intensities. We do this at the European level, and

28We argue that our two-stage procedure enables us to first estimate sovereign risk, and then bank exposures
to sovereign risk. In light of the results in Li and Zinna (2013), we would expect that a joint (one-stage)
estimation of the model would result in the systemic and country intensities capturing largely bank comovement
in credit risk at the national and Eurozone levels, and therefore the estimates would be silent about banks’
exposures to sovereign risk. This is because the cross section in the joint estimation would be dominated by
banks’ CDSs rather than sovereigns’ CDSs (i.e. 21 banks versus 4 sovereigns), so that the model will, above
all, try to price bank credit risk. In fact, we experimented with a joint estimation of the model and found
that the results were substantially different from those of the two-stage estimation. Not only the evolution of
the systemic intensity was different but individual bank exposures’ to systemic and country intensities were
also remarkably higher than the sovereign exposures. Taken together, this evidence offers additional support
for our two stage-estimation methodology for quantifying banks’ exposures to sovereign risk.

29Some standard sources of banks’ commonality are, for instance, the repo market, monetary policy, liquidity
shocks and regulation (see, e.g., Kashyap and Stein, 2000, 2004; Cetorelli and Goldberg, 2012). We also refer
to Brunnermeier (2009), and Eichengreen, Mody, Nedeljkovic and Sarno (2012) for a detailed description of
commonalities in banks’ own credit risk.
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separately at the country level. We find that there is, in fact, substantial comovement in

the evolution of bank-idiosyncratic credit risk at the European level and, to an even greater

extent, at the country level (see the Internet Appendix). Notably, the resulting principal com-

ponents behave as level factors, as they load positively on all bank-idiosyncratic intensities.

In addition, the plots of the (cumulative sum of the) European bank and country systematic

factors present some similarities to, as well as important differences from, the systemic and

country sovereign intensities displayed in Figure 2.

In sum, these pieces of empirical evidence seem to support the premise that our model

specification and the two-stage model estimation methodology allow us to shed light on banks’

exposures to both systemic and country-specific sovereign credit risk.

6 Risk Premia: Components and Term Structures

Expected excess returns to investors for bearing the credit risk on defaultable bonds, or simply

default risk premia, are at the heart of the current policy debate. In particular, there is an

increasing consensus that estimates of bond risk premia should serve as an input into the

monetary policy framework (Stein, 2014). One key advantage of our term-structure model is

that based on the estimates we can easily construct the total default risk premia, as well as

the risk premia associated with each component of credit risk for different horizons.

6.1 Distress Risk Premia

Investors bear the risk that future arrival rates of the credit events will differ from the current

consensus expectation implied in the CDS market. They therefore demand a compensation, in

the form of a distress risk premium, for being exposed to unexpected changes in the intensity

of default. The distress risk premium is widely explored in the credit risk term structure

literature (e.g., Pan and Singleton, 2008; Longstaff et al 2011; and, Zinna, 2013).30 However,

that stream of literature generally relies on a single intensity that is assumed to determine

the sovereign probability of default, i.e., univariate models of credit risk. In our model, in

contrast, the sovereign intensity of default is composed of a systemic component, a country-

specific component, and the bank intensity accounts also for an idiosyncratic component.

Each component can command a separate risk premium, and each risk premium can display

peculiar properties.

The distress risk premium is simply computed as the difference between the default swap

30A number of studies instead looks at the jump-at-event risk premium, which compensates the investor
for an unexpected jump in price that may take place in conjunction with a credit event that triggers CDS
contracts. This risk premium is given by the distance between the risk-neutral and the objective arrival rates
of the credit event (Driessen, 2005). However, in modeling the term structure of CDS premia, we can only
extract the risk-neutral intensity of default. We would need additional data on the actual probability of default
to estimate the objective intensity of default.
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spread priced under the risk-neutral probability measure (CDS) and under the objective mea-

sure (CDSP). The pricing of both CDS and CDSP is based on equation (3), which depends on

the total intensity of equation (4) for sovereigns and on the total intensity of equation (7) for

banks. More specifically, the difference is that the default probability driving the objective

CDS price is implied in the intensities defined under the objective probability of equations (9)

and (10) for sovereigns, and equations (9)-(11) for banks. In other words, under the essentially

affine specification of the market price of risk, the CDSP price is obtained by replacing κQ and

κQi (and also κQi,j) with κP and κPi (and also κPi,j), respectively, when pricing sovereign (bank)

CDS premia.

A similar reasoning applies when the objective is to identify the separate components of

the risk premium. More specifically, in order to quantify the magnitude of each risk-premium

component, we set the relevant market price of risk at zero.31 Take, for example, the systemic

risk premium, which consists of replacing κQ with κP when pricing the CDS contract. We

can then compute the country and bank-idiosyncratic risk premia in similar ways. It is then

standard to present the contribution of the risk premium to the spread (e.g. Pan and Singleton,

2008). For example, the percentage contribution of the total risk premium to the spread with

maturity M is defined as CRP (M) = (CDS(M) − CDS(M)P)/CDS(M). The percentage

contributions of risk-premia components to the spread are computed in a similar way by using

the pseudo-objective spread associated with the focal component. The term structure of the

CRPs, and of their components, are then easily obtained by varying the maturity M. In sum,

when the risk-neutral CDS price is larger than the pseudo-objective price CDSP, the buyer of

protection is willing to pay a premium for holding the CDS contract.

6.2 Empirical Estimates

Table 6 presents summary statistics for the term structure of the sovereign distress risk premia

components. We find that the percentage contribution of the total risk premium to the spread

(CRP) decreases with the credit risk of the sovereign. In fact, the CRPs of Germany and

France are higher than those of Italy and Spain. In addition, the CRPs increase with the

maturity. For example, for Germany, the risk premium explains roughly 68% of the one-year

spread, and almost the entirety of the ten-year spread. In contrast, for Spain, the one-year

CRP is about 47% and the ten-year is about 87%. Regardless of the sovereign, the term

structures of the CRPs slope upward.

However, the analysis of the CRP components reveals that the behaviors of the systemic

(SCRP) and country (CCRP) risk premia are remarkably different. In fact, the SCRPs display

hump-shaped term structures, while the CCRPs term structures slope upward. This suggests

31The methodology behind this decomposition closely follows Li and Zinna (2014). We refer the reader to
the detailed description of the risk premia algebra presented in their Internet Appendix. Their methodology
is easily extended to our three-factor model, which determine the pricing of bank credit risk.
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that shorter-term contracts are particularly informative on Euro tail risk. This is because

CDS term structures tend to invert during periods of market turmoil, so that shorter-term

contracts react more to Euro tail risk – and they do so more quickly – than longer-term

contracts. Specifically, one-year SCRPs for Germany and France are roughly twice as large as

the respective CCRPs, while the ten-year SCRPs are substantially lower than the respective

CCRPs. Of particular interest is also the fact that although the CRP is rather stable over

time, its components display substantial time variation, which suggests that the SCRPs and

CCRPs tend to move in opposite directions.

Table 7 reports bank distress risk premia in terms of country averages. Banks’ CRPs

are generally lower than sovereign CRPs, and this difference is particularly large for German

banks. Furthermore, the slope of the banks’ CRP is steeper than the slope of sovereigns’

CRPs. This result may be due to the fact the idiosyncratic risk premia (ICRP) also display

upward-sloping term structures, thereby reinforcing the effect of the country risk premia,

which also show upward-sloping term structures. In contrast, similar to sovereign SCRPs, the

term structures of bank SCRPs are hump shaped.

In sum, the properties of the risk premia components are remarkably different. Of partic-

ular interest is the systemic risk premium, as its hump-shaped term structure suggests that

Eurozone tail risk is largely priced into short- to medium-term CDS contracts. This implies

that the estimates of the SIWs might represent an upper boundary. In fact, the decomposi-

tion of the CDS spreads for different maturities shows that the importance of the systemic

component decreases with the maturity. For example, while the Italian sovereign SIW is 48%,

the contributions of systemic risk to the 1-, 3-, 5- and 10-year spreads are 44%, 37%, 28%,

and 18%, respectively. Similar results hold for the other sovereigns. In sum, the fraction of

CDS spreads due to Euro tail risk, or sovereign systemic risk, displays a downward-sloping

term structure. This indicates that the market expects the risk-neutral (or risk-adjusted)

probability of a systemic sovereign event, relative to that of a country event, to be higher in

the short to medium term.

7 Conclusions

The primary goal of this paper is to quantify, by only using information embedded in CDS

data, individual exposures of large European banks to systemic and country-specific sovereign

credit risk. Thus, the focus is on what the CDS market tells us about banks’ exposures to

sovereign risk. We estimate the model in two stages. In the first stage, we estimate the

probability of joint defaults of large Eurozone sovereigns (systemic risk) and the probability

of sovereign-specific defaults (country risk) for the 2008-2013 period. We find that sovereign

systemic credit risk reaches its peak in late 2011 and then wears off in 2012 following Draghi’s

speeches and the consequent introduction of the Outright Monetary Transactions. Spain and
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Italy are the countries most exposed to systemic risk, but systemic risk explains most of the

German and French credit risk. It is worth pointing out that part of German credit risk is

country specific, which supports our identification strategy.

In the second stage, we quantify each bank’s exposure to sovereign risk based on CDS

premia. Notably, we find strong evidence that not only European banks are exposed to

sovereign risk, but also that they are exposed to both types (systemic and country specific) of

sovereign risk. Spanish banks display the highest exposures to systemic sovereign risk. They

are followed by French, Italian, and German banks. However, Spanish and Italian banks

display lower exposures to systemic risk than their respective sovereigns, which highlights the

sovereign nature of the crisis, and the pivotal role of the Italian and Spanish sovereigns. In

contrast, the significant exposures of French and German banks to systemic sovereign risk, or

Euro tail risk, might reflect their large international exposures (Noeth and Sengupta, 2012).

Overall, sovereign credit risk accounts for roughly 45% of French and Spanish bank credit

risk, 30% of Italian bank credit risk, and 23% of German bank credit risk, on average, over

the sample. However, the share of bank credit risk arising from the sovereign risk components

varies significantly over time.

There are significant cross-sectional differences in banks’ individual exposures to systemic

and country sovereign risk. Therefore, it is important to examine whether these estimated

banks’ sovereign exposures relate to banks’ direct exposures to sovereign risk, but also to

bank size, and expected government support. We find that the share of bank credit risk

that is due to sovereign risk increases with bank size. In contrast, smaller banks display a

higher credit risk that is largely bank specific. Moreover, the fraction of banks’ credit risk

due to their exposures to systemic (country-specific) sovereign credit risk co-moves with their

holdings of Eurozone (domestic) sovereign debt. Furthermore, the higher the expected level

of government support, the higher the probability that the bank defaults as a country-specific

sovereign shock arrives.

These results also bear important policy implications. In particular, it is important to

complement the information obtained from measures of direct bank exposures to sovereign

risk, such as holdings of sovereign debt, with measures extracted from asset prices, as the

latter might also reflect banks’ indirect exposures to sovereign risk resulting, for example,

from weak bank business models. One caveat is that our results apply to a small group of

systemically important European banks. However, Europe serves as an excellent laboratory

for examining banks’ exposures to sovereign risk.

We complete the analysis by assessing the properties of the distress risk premia, which

compensate investors for unexpected changes in the default intensity. These risk premia are

also at the center of the policy debate (Stein, 2014). We find that the contribution of the

distress risk premia to the sovereign spreads is particularly high and that it decreases with

the credit risk of the sovereign. Moreover, it displays an upward-sloping term structure, so
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that longer-term CDSs largely reflect investors’ aversion to unexpected changes in default risk,

rather than the objective probability of default of the sovereign. However, the behaviors of

the components of the distress risk premia are remarkably different. In fact, while the term

structure of the systemic risk premia is hump shaped, the term structure of the country risk

premia slopes upward. This evidence partly explains why we find that the fraction of the CDS

spreads due to systemic sovereign risk decreases with maturity. This, in turn, indicates that

short- to medium-term CDS contracts are more informative than longer-term CDS contracts

with regard to the evolution of Euro sovereign tail risk. This result, therefore, lends support

to the choice of the ECB to tackle Eurozone systemic risk, or the fears of reversibility of the

euro, by focusing the Outright Monetary Transactions on government-issued bonds with short

maturities.
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A Appendix: Pricing Credit Default Swaps

The pricing of sovereign CDS premia is based on the two-factor pricing models of Ang and
Longstaff (2013) and Li and Zinna (2013). Therefore, we refer the reader to those studies.
In this Appendix, we present the pricing of bank CDS premia, which is instead new, as it is
based on a three-factor pricing model.

Assume that we have a risk-free rate rt, such that the zero-coupon bond, D(M), with
maturity M is priced by:

D(M) = EQ
[
exp

(
−
∫ t+M

t

rtdt

)]
. (A.1)

Given the specification for the default intensity, λi,j,t = αi,jSt+γi,jCt,i+It,i,j, the dynamics
of equations (6), (5), and (8), assuming that rt and λi,t are independent, and the loss rate
LQ = 1−RQ, it follows that the price of the CDS spread for bank j located in country i is:

CDSi,j(t, T ) = LQ
EQ
[ ∫ t+M

t
D(s− t)λi,j,s exp

(
−
∫ s
t
λi,j,udu

)
ds
]

EQ
[ ∫ t+M

t
D(s− t) exp

(
−
∫ s
t
λi,j,udu

)
ds
] . (A.2)

As the states of equations (6), (5) and (8) follow square-root processes, the transform
approach proposed by Duffie, Pan, and Singleton (2000) can be used to analytically solve the
expectations in equation (3). Also assuming a constant risk free rate, we end up with:

CDSi,j(t, T ) = LQ

∫ t+M
t

(
Ĩ(s, Ss, Cs,i, Is,i,j) + αi,jC̃(s, Ss, Cs,i, Is,i,j) + γi,jS̃(s, Ss, Cs,i, Is,i,j)

)
ds∫ t+M

t

(
C(s, Ss)A(s, Cs,i)B(s, Is,i,j

)
ds

,

(A.3)
where

Ĩ(s, Ss, Cs,i, Is,i,j) = C(s, Ss)A(s, Cs,i)S(s, Is,i,j), (A.4)

C̃(s, Ss, Cs,i, Is,i,j) = C(s, Ss)B(s, Is,i,j)H(s, Cs,i), (A.5)

S̃(s, Ss, Cs,i, Is,i,j) = A(s, Cs,i)B(s, Is,i,j)F(s, Ss), (A.6)

B(s, Is,i,j) = B1(s) exp(B2(s)Is,i,j), (A.7)

A(s, Cs,i) = A1(s) exp(A2(s)Cs,i), (A.8)

C(s, Ss) = C1(s) exp(C2(s)Ss), (A.9)

(A.10)
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S(s, Is,i,j) = (S1(s) + S2(s)Is,i,j) exp(B2(s)Is,i,j), (A.11)

H(s, Cs,i) = (H1(s) + H2(s)Cs,i) exp(A2(s)Cs,i), (A.12)

F(s, Ss) = (F1(s) + H2(s)Ss) exp(F2(s)Ss), (A.13)

B1(s) = exp

(
ηi,j(κ

Q
i,j + φ)s

σ2
i,j

)(
1− θ

1− θeφs

)2ηi,j/σ
2
i,j

, (A.14)

B2(s) =
κQi,j − φ
σ2
i,j

+
2φ

σ2
i,j(1− θeφs)

, (A.15)

A1(s) = exp

(
ηj(κ

Q
j + ψ)s

σ2
j

)(
1− v

1− veψs

)2ηj/σ
2
j

, (A.16)

A2(s) =
κQj − ψ
σ2
j

+
2ψ

σ2
j (1− veψs)

, (A.17)

C1(s) = exp

(
η(κQ + ψ)s

σ2

)(
1− v

1− veψs

)2η/σ2

, (A.18)

C2(s) =
κQ − ψ
σ2

+
2ψ

σ2(1− veψs)
, (A.19)

S1(s) =
ηi,j
φ

(eφs − 1) exp

(
ηi,j(κ

Q
i,j + φ)s

σ2
i,j

)(
1− θ

1− θeφs

)2ηi,j/σ
2
i,j+1

, (A.20)

S2(s) = exp

(
ηi,j(κ

Q
i,j + φ)s

σ2
i,j

+ φs

)(
1− θ

1− θeφs

)2ηj/σ
2
i,j+2

, (A.21)

H1(s) =
ηj
ψ

(eψs − 1) exp

(
ηj(κ

Q
j + ψ)s

σ2
j

)(
1− v

1− veψs

)2ηj/σ
2
j+1

, (A.22)

H2(s) = exp

(
ηj(κ

Q
j + ψ)s

σ2
j

+ ψs

)(
1− v

1− veψs

)2ηj/σ
2
j+2

, (A.23)
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F1(s) =
η

ξ
(eξs − 1) exp

(
η(κQ + ξ)s

σ2

)(
1− u

1− ueξs

)2η/σ2+1

, (A.24)

F2(s) = exp

(
η(κQ + ξ)s

σ2
+ ξs

)(
1− u

1− ueξs

)2η/σ2+2

, (A.25)

φ =

√(
κQi,j
)2

+ 2σ2
i,j, (A.26)

ψ =

√(
κQj
)2

+ 2αi,jσ2
j , (A.27)

ξ =

√
(κQ)2 + 2γi,jσ2, (A.28)

θ = (κQi,j + φ)/(κQi,j − φ), (A.29)

v = (κQj + ψ)/(κQj − ψ), (A.30)

u = (κQ + ξ)/(κQ − ξ). (A.31)
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Table 1: Summary Statistics

Name ID Mean StDev Min Med Max AC(1) nobs.

Germany GER 43 26 5 39 108 0.979 311
Deutsche Bank AG DB 118 40 52 106 287 0.917 311
Commerzbank AG CB 145 68 53 134 364 0.961 311
Deutsche Zentral-Genossenschaftsbank DZ 112 27 52 109 190 0.927 311
Landesbank Baden-Wuerttemberg LBW 132 56 48 118 320 0.968 311
Bayerische Landesbank BYLAN 129 56 60 110 338 0.971 311
Norddeutsche Landesbank Girozentrale NDB 135 46 50 121 320 0.959 286
HSH Nordbank AG HSH 206 63 102 191 379 0.949 286

France FRA 80 57 7 71 247 0.984 311
BNP Paribas SA BNP 122 67 35 103 352 0.968 311
Crèdit Agricole CA 152 72 48 137 383 0.961 311
Sociètè Gènèrale SA SG 158 85 40 131 417 0.964 311
Natixis NTX 185 62 55 169 335 0.945 311

Italy ITA 213 141 25 185 577 0.982 311
Intesa Sanpaolo SpA ISP 199 138 34 151 572 0.982 311
UniCredit SpA UI 226 144 46 180 648 0.979 311
Banca Monte dei Paschi di Siena MPS 303 228 55 215 878 0.987 311
Banco Popolare Societa Cooperativa BP 329 217 69 266 951 0.982 311
Unione di Banche Italiane UBI 218 144 36 183 643 0.981 311

Spain ESP 221 143 24 225 617 0.984 311
Banco Santander SA BST 201 106 49 189 484 0.973 311
Banco Bilbao Vizcaya Argentaria, SA BBVA 211 113 47 211 504 0.975 311
Caja de Ahorros y Pensiones BCXA 232 83 83 235 450 0.961 299
Banco Popular Espaǹol SA BPE 401 212 92 348 926 0.983 291
Banco de Sabadell, SA BSB 382 195 124 335 833 0.984 299

The table reports summary statistics for the five-year CDS spreads for the sovereigns and the indicated banks.
Specifically, we report the time series mean (Mean); standard deviation (StDev); minimum (Min); maximum
(Max); first-order autocorrelation coefficient (AC(1)); and number of observations (nobs). We also report the
sovereign and bank identifiers (ID) used in the subsequent tables. The sample consists of weekly observations
from January 9, 2008 to December 18, 2013. Sources: CMA.
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Table 2: Systemic and Country Intensities’ Parameter Estimates

Panel A: Systemic Intensity (St)

η κP σ kQi
0 1.33 0.16 -0.48

[0.00;0.00] [0.33;2.35] - [-0.50;-0.46]

Panel B: Country Intensities (Ct)

ηi κPi σi kQi σiε αi

GER 0.1 1.43 0.1 -0.69 2.01 1
[0.07;0.12] [0.33;2.58] [0.09;0.10] [-0.70;-0.67] [1.96;2.05] -

FRA 0.4 0.99 0.11 -0.66 1.62 2.56
[0.38;0.43] [0.25;1.70] [0.11;0.11] [-0.67;-0.65] [1.58;1.66] [2.50;2.63]

ITA 6.19 0.49 0.18 -0.41 2.15 5.96
[5.93;6.45] [0.11;0.89] [0.18;0.18] [-0.42;-0.40] [2.11;2.20] [5.75;6.18]

ESP 7.76 0.39 0.18 -0.3 1.76 6.01
[7.52;8.01] [0.10;0.70] [0.17;0.18] [-0.30;-0.29] [1.73;1.80] [5.79;6.23]

Panel C: Systemic Intensity Weights (SIW)
Mean Med. SDev. Min Max AC(1)

GER 66.2 83.1 33.0 1.4 99.4 0.978
FRA 69.7 87.7 34.3 1.6 99.1 0.980
ITA 48.5 58.9 28.8 0.4 93.2 0.981
ESP 44.4 47.0 30.1 0.3 94.8 0.985

The table reports posterior means and 95% credible intervals (in squared brackets) for the parameter estimates
resulting from step-one estimation on sovereign CDSs. The top panel presents the parameters driving the
dynamics of St (Systemic Intensity), whereas the middle panel presents the parameters driving the dynamics
of Ct,i (Country Intensities). The bottom panel reports the summary statistics of αiSt/(αiSt+Ct,i) (Systemic
Intensity Weights). The estimation is performed using the Bayesian algorithm described in Section 4.3, and
is based on weekly data from January 9, 2008, to December 18, 2013. The η, ηi, σε, and σε,i parameters are
presented in basis points, while the systemic intensity weights are presented as percentages.
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Table 3: Systemic and Country Intensity Weights

Panel A: German Banks

SIW CIW
αi,j Mean SDev Min Max γi,j Mean SDev Min Max

DB 1.20 17.3 13.1 0.1 67.2 1.83 12.3 6.1 0.2 87.2
CB 2.32 26.1 23.7 0.2 72.9 2.38 7.9 6.7 0.3 25.8
DZ 1.42 17.3 9.9 0.3 63.5 1.77 9.3 4.2 0.3 39.1
LBW 2.47 20.3 16.0 0.5 61.3 1.96 9.2 3.9 0.2 39.9
BYLAN 1.57 13.0 11.0 0.2 50.4 1.42 8.7 2.8 0.1 52.6
NDB 1.18 9.5 8.4 0.1 23.2 0.03 0.1 0.0 0.0 0.2
HSH 1.24 8.0 3.0 0.1 41.1 1.85 2.9 1.8 0.2 13.4
Avg 1.63 15.9 12.2 0.2 54.2 1.60 7.2 3.6 0.2 36.9

Panel B: French Banks

SIW CIW
αi,j Mean SDev Min Max γi,j Mean SDev Min Max

BNP 2.37 34.2 36.3 0.4 80.9 1.57 20.3 11.0 0.3 71.3
CA 2.70 30.3 26.6 0.3 83.6 1.99 19.8 12.2 0.3 82.1
SG 3.08 31.9 32.7 0.3 79.8 1.91 17.7 9.0 0.3 79.9
NTX 3.23 22.9 12.6 0.3 80.1 1.51 10.2 6.8 0.1 58.1
Avg 2.84 29.8 27.0 0.3 81.1 1.74 17.0 9.8 0.3 72.9

Panel C: Italian Banks

SIW CIW
αi,j Mean SDev Min Max γi,j Mean SDev Min Max

ISP 0.00 0.0 0.0 0.0 0.0 0.77 34.1 35.5 1.4 90.9
UI 0.00 0.0 0.0 0.0 0.0 0.91 31.9 31.0 1.2 95.5
MPS 3.41 22.6 17.3 0.1 66.9 0.48 13.7 13.7 0.5 38.9
BP 3.36 14.1 11.8 0.1 60.3 0.51 11.0 11.3 0.4 28.0
UBI 2.98 21.7 20.5 0.1 69.9 0.04 1.6 1.5 0.1 5.2
Avg 1.95 11.7 9.9 0.0 39.4 0.54 18.4 18.6 0.7 51.7

Panel D: Spanish Banks

SIW CIW
αi,j Mean SDev Min Max γi,j Mean SDev Min Max

BST 3.98 27.6 25.5 0.2 63.4 0.54 32.6 38.1 0.4 69.2
BBVA 4.31 28.9 26.8 0.2 69.4 0.64 36.6 38.9 0.6 84.0
BCXA 2.42 12.5 9.1 0.1 68.0 0.11 5.3 5.0 0.1 20.3
BPE 5.96 16.8 18.1 0.1 46.2 0.74 20.3 24.1 0.3 42.4
BSB 6.32 17.8 18.4 0.1 55.9 0.79 23.4 27.0 0.5 65.5
Avg 4.60 20.7 19.6 0.1 60.6 0.56 23.6 26.6 0.4 56.3

This table reports the individual bank systemic (αi,j) and country (γi,j) exposures, as well as the summary
statistics of the systemic (SIW =αi,jSt/(αi,jSt + γi,jCt,i + It,i,j)) and country (CIW = γi,jCt,i/(αi,jSt+
γi,jCt,i+It,i,j)) intensity weights. Avg. denotes the averages by country groups. The systemic and country
intensity weights are displayed as percentages.
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Table 4: Determinants of Systemic and Country Intensity Weights

Panel A: SIW

(1) (2) (3) (4) (5)

Size 0.179b

(in %) (0.0836)
For.Exp. 0.158b

(in ebn) (0.0716)
For. Sub. 0.602b

(in ebn) (0.275)
Dom. Exp. -0.0977

(in ebn) (0.134)
Dom. Sub. -1.134a

(in ebn) (0.546)
Con. 14.11a 16.04a 15.74a 21.96a 25.10a

(2.957) (2.329) (2.416) (4.738) (3.581)

Obs. 21 21 21 21 21
R2(%) 19.5 20.4 20.1 2.7 18.5

Panel B: CIW
(1) (2) (3) (4) (5)

Size 0.278a

(in %) (0.0837)
For.Exp. 0.0745
(in ebn) (0.0890)

For. Sub. 0.289
(in ebn) (0.341)

Dom. Exp. 0.262a

(in ebn) (0.141)
Dom. Sub. 1.472b

(in ebn) (0.594)
Con. 8.621a 14.67a 14.51a 7.757 7.945a

(2.962) (2.896) (2.998) (4.994) (3.896)

Obs. 21 21 21 21 21
R2(%) 36.7 3.6 3.6 15.3 24.4

Panel A: SIW (Panel B: CIW) reports the cross-sectional regressions of the bank mean systemic (coun-
try) intensity weights on several measures of banks’ exposures to sovereign risk. These measures include:
bank size, measured in terms of total assets relative to country GDP (in %); individual bank holdings of
domestic (Dom.Exp.) and non-domestic (For.Exp.) sovereign securities, measured in e billions; and domes-
tic (Dom.Sub.) and non-domestic (For.Sub.) sovereign subsidies, measured in e billions. The holdings of
sovereign securities were published by the EBA as a result of the 2011 stress tests. The sovereign subsidy is
constructed as in Korte and Steffen (2014) by assigning appropriate weights to each holding of sovereign debt.
a, b, and c denote the 1-, 5-, and 10-percent significance levels, respectively. Sources: Capital IQ and European
Banking Authority (http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2011/results).
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Table 5: Expected Government Support and Bank Exposures to Country Risk

γi,j CIW
(1) (2) (3) (4) (1) (2) (3) (4)

All-in-all CR 0.215c 2.243
(0.123) (1.983)

Stand-alone CR -0.0227 0.172 4.615a 3.626b

(0.101) (0.122) (1.113) (1.511)
Uplift 0.203c 0.339b -4.604a -1.724

(0.109) (0.143) (1.476) (1.778)
Contant -0.719 1.337c 0.767b -0.680 -3.290 -14.80c 25.99a -4.551

(1.099) (0.704) (0.268) (1.060) (17.71) (7.778) (3.643) (13.14)

Obs. 20 20 20 20 20 20 20 20
R2(%) 14.5 0.3 16.2 24.9 6.6 48.8 35.1 51.5

This table reports the cross-sectional regressions of banks’ exposures to country default risk (γi,j) on the left
panel, and the mean country intensity weight, CIW = γi,jCt,i/(αi,jSt+ γi,jCt,i+It,i,j) on the right panel, on
several measures. These measures include: the bank’s ability to repay its deposit obligations, i.e. Moody’s
foreign-currency deposit rating (All-in-all CR); the bank’s intrinsic safety and soundness, i.e. Moody’s bank
financial strength rating (Stand-alone CR); and the expected level of government support, which is measured
as the difference between foreign-currency deposit rating and the bank financial strength rating (Uplift).
Foreign-currency deposit ratings are mapped from the original BCA scale to the BFSR scale. The BCA is
then converted into a numerical scale ranging from 1, indicating the lowest quality, to 13, indicating the highest
quality. This methodology closely follows Correa et al. (2014). a, b, and c denote the 1-, 5-, and 10-percent
significance levels, respectively. Source: Bloomberg.
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Table 6: Term Structure of Sovereign Risk Premia Components

Panel A: Germany

Total Systemic Country
1yr 3yr 5yr 10yr 1yr 3yr 5yr 10yr 1yr 3yr 5yr 10yr

Mean 68 92 97 99 42 54 51 43 26 38 46 56
Sdev 2 1 1 0 22 29 30 28 24 31 31 29
Min 66 90 96 98 1 1 1 0 1 1 2 5
Max 71 94 98 100 65 89 94 93 71 94 98 99

Panel B: France

Total Systemic Country
1yr 3yr 5yr 10yr 1yr 3yr 5yr 10yr 1yr 3yr 5yr 10yr

Mean 65 90 95 98 44 56 50 34 20 34 45 64
Sdev 1 1 1 1 22 30 30 23 22 31 31 24
Min 63 88 94 97 1 1 0 0 1 3 7 25
Max 65 91 97 99 64 86 87 71 63 90 97 99

Panel C: Italy

Total Systemic Country
1yr 3yr 5yr 10yr 1yr 3yr 5yr 10yr 1yr 3yr 5yr 10yr

Mean 52 78 86 91 30 35 28 17 22 43 58 75
Sdev 6 3 2 1 17 21 17 12 12 18 17 11
Min 43 71 79 88 0 0 0 0 6 17 31 56
Max 61 83 88 92 54 65 55 37 42 73 85 92

Panel D: Spain

Total Systemic Country
1yr 3yr 5yr 10yr 1yr 3yr 5yr 10yr 1yr 3yr 5yr 10yr

Mean 47 72 80 87 28 33 28 17 19 38 52 70
Sdev 8 5 3 2 18 22 19 13 10 17 17 12
Min 34 64 71 81 0 0 0 0 3 8 15 37
Max 61 83 87 89 58 74 71 52 34 63 77 87

This table reports summary statistics for the term structure of the percentage contributions of distress risk
premia, and their components to the 1-, 3-, 5-, and 10-year sovereign CDS spreads. The left panels denote
the risk premia induced by the total default intensity (αiSt + Ct,i); the middle panels denote the risk premia
induced by the scaled systemic default intensity (αiSt); and the right panels denote the risk premia induced
by the country default intensity (Ct,i).
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Table 7: Term Structure of Bank Risk Premia Components by Country Averages

Panel A: German Banks

Total Systemic Country Idiosyncratic
1y 3y 5y 10y 1y 3y 5y 10y 1y 3y 5y 10y 1y 3y 5y 10y

Mean 33 56 68 76 11 18 20 17 6 12 17 21 15 26 29 37
Sdev 6 7 7 5 9 14 16 14 6 11 14 15 4 7 9 10
Min 23 43 54 66 0 0 0 0 0 1 1 2 7 12 13 19
Max 47 70 80 85 34 49 54 50 25 41 51 53 21 39 48 58

Panel B: French Banks

Total Systemic Country Idiosyncratic
1y 3y 5y 10y 1y 3y 5y 10y 1y 3y 5y 10y 1y 3y 5y 10y

Mean 47 74 84 89 20 27 25 18 12 24 32 39 15 23 26 32
Sdev 7 7 6 4 15 20 19 14 12 20 24 22 7 13 15 16
Min 33 58 70 81 0 0 0 0 0 2 4 10 3 6 7 11
Max 61 85 92 95 51 65 62 48 45 69 79 79 29 51 59 65

Panel C: Italian Banks

Total Systemic Country Idiosyncratic
1y 3y 5y 10y 1y 3y 5y 10y 1y 3y 5y 10y 1y 3y 5y 10y

Mean 30 55 68 80 8 12 12 8 9 21 31 46 12 21 24 25
Sdev 7 9 7 4 7 9 9 6 5 8 9 9 4 7 9 8
Min 20 41 54 70 0 0 0 0 1 5 11 27 2 4 6 9
Max 47 74 83 88 26 35 33 21 22 42 53 67 18 34 41 41

Panel D: Spanish Banks

Total Systemic Country Idiosyncratic
1y 3y 5y 10y 1y 3y 5y 10y 1y 3y 5y 10y 1y 3y 5y 10y

Mean 36 61 72 81 15 20 19 13 9 18 25 39 13 22 26 29
Sdev 6 6 4 3 11 15 15 10 5 10 12 13 5 9 11 11
Min 27 51 63 75 0 0 0 0 1 3 5 14 4 7 8 11
Max 51 75 81 87 40 54 51 38 20 39 51 64 24 44 54 58

This table reports summary statistics for the term structure of the percentage contributions of distress risk
premia, and their components, to the 1-, 3-, 5-, and 10-year bank CDS spreads. We present the results in
terms of country averages. Individual bank risk premia are presented in the Internet Appendix. Total denotes
the risk premia induced by the total default intensity (αi,jSt + γi,jCt,i + It,i,j); Systemic denotes the risk
premia induced by the scaled systemic default intensity (αiSt); Country denotes the risk premia induced by
the scaled country intensity (γi,jCt,i); and Idiosyncratic denotes the risk premia induced by the idiosyncratic
intensity (It,i,j).
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Figure 1: Europe Systemic Sovereign Credit Risk

This figure plots the time series of the estimated systemic default intensity (St) and its 95% credible interval.
The intensity process is measured in basis points. Dotted lines are associated with the following selected
events: 1) the Federal Reserve announces the introduction of the TSLF (March 2008); 2) the FED announces
the creation of TALF, and a new program for purchasing direct obligations of Fannie Mae and Freddie Mac
(November 2008); 3) US authorities announce the launch of the TALF (March 2009); 4) the first austerity
package for Greece (February 2010); 5) the European Financial Stability Facility (EFSF) is established (June
2010); 6) Eurozone finance ministers agree to set up the European Stability Mechanism (ESM), which is a
permanent bailout fund in the region of 500bn euros that will replace the EFSF (February 2011); 7) Spain
passes a constitutional amendment to add in a ‘golden rule’, such that future budget deficits are kept to a strict
limit, and Italy passes a 50bn euro austerity budget to balance the budget by 2013 (September 2011); 8) fears
that Europe’s sovereign debt crisis is spiralling out of control bring a dramatic increase in debt yields across
the eurozone (November 2011); 9) the ECB announces the introduction of the LTRO (December 2011); 10)
the ’fiscal pact’ agreed by the EU in December 2011 is signed (January 2012); 11) the Greek parliament passes
the unpopular austerity bill in parliament (February 2012); 12) Mario Draghi’s ‘Courageous Leap’ speech after
the European Union summit in Brussels (May 2012); and 13) Mario Draghi’s ‘Whatever It Takes’ speech at
the Global Investment Conference in London (July 2012)
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Figure 2: Systemic and Country Sovereign Credit Risk

This figure presents the time series of the estimated scaled systemic default (αiSt) and country (Ct,i) intensities.
The intensity processes is measured in basis points.
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Figure 3: Bank Systemic, Country and Idiosyncratic Intensity Weights by Country

This figure presents the average time series of the bank systemic (αi,jSt/(αi,jSt + Ct,i + It,i,j)), country
(γi,jCt,i/(αi,jSt + Ct,i + It,i,j)), and idiosyncratic (It,i,j/(αi,jSt + Ct,i + It,i,j)) intensity weights by country.
The intensity weights are measured in percentage. The dotted line is dated October 2008 when many countries
announced comprehensive rescue packages involving some combination of recapitalizations, debt guarantees,
and asset purchases.
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Figure 4: Average Bank Systemic, Country, and Idiosyncratic Intensities by Country

This figure presents the country averages of the time series of the estimated bank scaled systemic (αi,jSt),
scaled country (γi,jCt,i), and idiosyncratic (It,i,j) default intensities. The intensities are measured in basis
points.
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How Much of Bank Credit Risk is Sovereign Risk?
Evidence from the Eurozone

by
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I MCMC Algorithm

Bayesian estimation methods are particularly suitable for continuous-time financial models (Johannes

and Polson (2009)). They allow us to simultaneously estimate model parameters and latent factors,

and to quantify the uncertainty around the estimates. In particular, they are widely used in the

estimation of term structure models of interest rates for a number of reasons. First, the likelihood

function is generally high dimensional and strongly non-linear in the model parameters, and it is

characterized by multiple local maxima. Furthermore, the dynamics of the underlying factors that

drive the pricing are generally highly persistent and the estimation sample is relatively small. For

this reason, maximum likelihood estimates of term structure models can suffer from small-sample

bias (Bauer, Rudebush, and Wu, 2012). In contrast, Bayesian methods do not rely on assumptions

on the order of integration in the factors. Therefore, Bayesian methods are probably even more

useful in the context of CDS term structure models: CDS prices are non-linear functions of the

underlying intensities and the intensities are often non-normally distributed. Despite these well-

known difficulties underlying the estimation of CDS term structure models, the MCMC algorithm

delivers exact finite sample properties of the estimates. In the following, we describe the MCMC

algorithm in detail.

I.1 First-stage Estimation: Sovereign Credit Risk

In the first stage, we estimate a two-factor credit risk model, similar to that found in Ang and

Longstaff (2013) and Li and Zinna (2013). The model takes the following state-space form:

Measurement Equations:

CDSobst,i = f(St, Ct, θ
Q, θQi , αi) + εt,i, , εt,i ∼ N (0,Σt,i) , (I.1)

State Equations:

St = ητ + (1− κPτ)St−τ + σ
√
τSt−τ bt, (I.2)

Ct,i = ηiτ + (1− κPi τ)Ct−τ,i + σi
√
τCt−τ,iwt,i, (I.3)

As the MCMC algorithm closely follows Li and Zinna (2013), we refer the reader to that paper for a

detailed description of the algorithm. The only difference relates to the measurement error variance,

which we allow to vary by maturity and over time with the bid-ask spreads, whereas it is constant

in Li and Zinna (2013). We specify banks’ measurement errors in a similar fashion. A detailed

description of how we draw Σt,i is provided in the next section.

I.2 Second-stage Estimation: Bank Credit Risk

The second-stage estimation is carried out bank by bank. For each bank, the measurement equation

is given by:

CDSobst,i,j = s
(
St, Ct,i, It,i,j , θ

Q, θQi , θ
Q
i,j , αi,j , γi,j

)
+ εt,i,j , εt,i,j ∼ N (0,Σt,i,j) , (I.4)

which uses the first-stage risk-neutral parameter estimates (θQ, θQi ), as well as the estimated intensi-

ties (St, Ct,i) as inputs. We only need to estimate the parameters (θQi,j) together with the sovereign

exposures (αi,j , γi,j) and the scaling factor (σ2ε,i,j), mapping the bid-ask spreads to Σt,i,j . The CDS

2



pricing is based on the three-factor pricing function s(·), as descrbed in the Appendix A. The state

equation is given by:

It,i,j = ηi,jτ + (1− κPi,jτ)It−τ,i,j + σi,j
√
τIt−τ,i,jzt,i,j . (I.5)

Similar to the first-stage estimation, κPi,j and σε,i,j have conjugate priors. However, the remaining

parameters and the idiosyncratic bank intensity do not have conjugate priors. For this reason, we use

Neal’s (2003) slice-sampling method to sample from their posteriors, which can be easily obtained in

the same spirit as Li and Zinna (2013). The key difference though is that we draw these parameters

conditional on the parameter and state estimates of the first stage.

Draw mean reversion parameter (κPi,j). The parameters κPi,j only enter the objective dynamics.

Therefore, it follows that:

p(κPi,j |CDSobs1:T,i,j , S1:T , C1:T,i, I1:T,i,j ,Θ−) ∝ p(I1:T,i,j |κPi,j ,Θ−)p(κPi,j)

∝ exp

(
−1

2

T∑
t=1

(It,i,j − ηi,jτ − (1− κPi,jτ)It−1,i,j)
2

σ2i,jτIt−1,i,j

)
p(κPi,j)

∝ exp

(
−1

2

T∑
t=1

(atκ
P
i,j − bt)2

σ2i,jτIt−1,i,j

)
p(κPi,j), (I.6)

where at = τIt−1,i,j and bt = κi,jτ + It−1,i,j . Given a flat prior, the posterior distribtion is a normal

κPi,j → N(Qm,Q), where m =
∑T

t=1
atbt

σ2
i,jτIt−1,i,j

and Q−1 =
∑T

t=1
a2t

σ2
i,jτIt−1,i,j

.

Draw Scaling Factor of Measurement Error Variance (σ2ε,i,j). At each time t, we assume

normal measurement errors for the observations with variance σ2ε,i,jBA
2
t , where BAt = |Bidt,i,j(M)−

Askt,i,j(M)|. Therefore, we have:

p(σ2ε,i,j |CDSobs1:T,i,j , S1:T , C1:T,i, I1:T,i,j ,Θ−)

∝ p(CDSobs1:T,i,j |σ2ε,i,j , S1:T , C1:T,i, I1:T,i,j ,Θ−)p(σ2ε,i,j)

∝ σ−TMε,i,j exp

[
−1

2

T∑
t=1

σ−2ε,i,j ê
′
t,i,j êt,i,j

]
p(σ2ε,i,j), (I.7)

where êt,i,j is the pricing error [CDSobst,i,j − s(·)]BA
−1
t . Thus, σ−2ε,i,j has a inverse gamma distribution

IG(a, b), where a = T
2M and b =

∑T
t=1 ê

′
t,i,j êt,i,j , given the flat prior.

Draw Parameters (ηi,j and σi,j). The parameters ηi,j and σi,j are sampled by the slice-sampling

method, as their posterior distributions are not known analytically. Note that they enter into both

the pricing formula and the respective objective dynamics. Thus, the joint posterior is:

p(ηi,j , σi,j |CDSobs1:T,i,j , S1:T , C1:T,i, I1:T,i,j ,Θ−)

∝
T∏
t=1

p(CDSobst,i,j |St, Ct,i, It,i,j ,Θ)p(It,i,j |It−1,i,j , ηi,j , σi,j)p(ηi,j , σi,j)

∝ 1

σTi,j
exp

[
−1

2

T∑
t=1

(
σ−2ε,i,j ê

′
t,i,j êt,i,j +

At
σ2i,jτIt−1,i,j

)]
p(ηi,j , σi,j), (I.8)

where At = (It,i,j − ηi,jτ − (1− κPi,jτ)It−1,i,j)
2.
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Draw Risk-neutral Parameters (κQi,j and γi,j). The parameters κQi,j and γi,j are sampled by the

slice-sampling method, as their conditional distributions are not known analytically. Note that the

parameters κQi,j and γi,j only enter into the pricing formula s(·). Therefore, the joint posterior is:

p(κQi,j , γi,j |CDS
obs
1:T,i,j , S1:T , C1:T,i, I1:T,i,j ,Θ−)

∝
T∏
t=1

p(CDSobst,i,j |St, Ct,i, It,i,j ,Θ)p(κQi,j , γi,j)

∝ exp

[
−1

2

T∑
t=1

σ−2ε,i,j ê
′
t,i,j êt,i,j

]
p(κQi,j , γi,j). (I.9)

Draw Bank-specific Intensity (It,i,j). The latent state It,i,j is sampled individually by the slice-

sampling method. For t = 1, . . . , T , the conditional posterior is:

p(It,i,j |CDSobs1:T,i,j , S1:T , C1:T,i, I−t,i,jΘ)

∝ p(CDSobst,i,j |St, Ct,i, It,i,j ,Θ)p(It,i,j |It+1,i,j , It−1,i,j ,Θ)

∝ p(CDSobst,i,j |St, Ct,i, It,i,j ,Θ)p(It+1,i,j |It,i,j ,Θ)p(It,i,j |It−1,i,j ,Θ), (I.10)

where the first term in (I.10) is:

p(CDSobst,i,j |·) ∝ exp

[
−1

2
σ−2ε,i,j ê

′
t,i,j êt,i,j

]
, (I.11)

and the second and third terms are given by:

p(It+1,i,j |·) ∝
1

σi,j
√
τIt,i,j

exp

(
−1

2

(It+1,i,j − ηi,jτ − (1− κPi,jτ)It,i,j)
2

σ2i,jτIt,i,j

)
, (I.12)

p(It,i,j |·) ∝ exp

(
−1

2

(It,i,j − ηi,jτ − (1− κPi,jτ)It−1,i,j)
2

σ2i,jτIt−1,i,j

)
. (I.13)

At time t = T , the posterior simplifies to:

p(IT,i,j |·) ∝ p(CDSobsT,i,j |ST , CT,i, IT,i,j ,Θ)p(IT,i,j |IT−1,i,j ,Θ), (I.14)

and at time t = 1 it becomes:

p(I1,i,j |·) ∝ p(CDSobs1,i,j |S1, C1,i, I1,i,j ,Θ)p(I2,i,j |I1,i,j ,Θ). (I.15)
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II Additional Tables

Table A1: Mid Price and Bid-Ask Spread Average Term Structures

CDS BID-ASK
ID 1yr 3yr 5yr 7yr 10yr 1yr 3yr 5yr 7yr 10yr
GER 17 28 43 52 59 3 3 3 4 5
DB 83 116 145 154 160 15 12 7 9 9
CB 67 91 112 117 122 16 14 11 10 10
DZ 99 118 132 135 138 23 17 14 12 12
LBW 92 111 129 132 135 23 17 14 13 12
BYLAN 103 121 135 140 144 20 15 11 11 11
NDB 176 193 206 208 210 20 15 11 11 11
HSH 66 97 122 132 138 11 10 7 8 9

FRA 35 57 80 92 100 5 4 4 5 6
BNP 66 97 122 132 138 11 10 7 8 9
CA 87 123 152 163 169 14 12 7 10 10
SG 95 129 158 168 175 15 12 8 10 10
NTX 134 164 185 191 195 34 23 18 16 15

ITA 142 190 213 219 220 14 9 6 7 9
ISP 139 176 199 208 214 19 14 9 11 11
UI 164 203 226 234 239 22 15 9 13 13
MPS 259 287 303 306 309 30 19 13 16 16
BP 274 308 329 335 337 42 27 18 20 20
UBI 166 195 218 223 228 33 22 17 16 15

ESP 155 202 221 226 225 14 9 6 8 9
BST 135 175 201 208 214 18 13 8 11 10
BBVA 142 184 211 219 224 19 13 8 10 9
BCXA 181 217 232 234 235 48 33 24 22 19
BPE 338 379 401 402 401 63 40 29 28 26
BSB 328 360 382 381 380 63 38 28 27 25

This table report average CDS spread term structures, and average bid-ask spread term structures, for the
German, French, Italian, and Spanish sovereigns and the indicated banks. The sample consists of weekly
observations from January 9, 2008, to December 18, 2013. Source: CMA.
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Table A2: Pricing Errors

Panel A: MAPE Panel B: MAPPE
1yr 3yr 5yr 7yr 10yr 1yr 3yr 5yr 7yr 10yr

GER 5.4 5.6 3.9 3.5 4.1 38.6 21.3 9.6 6.8 7.2
DB 15.5 10.3 9.8 12.9 15.5 34.7 10.7 8.3 10.6 11.8
CB 24.9 14.6 12.6 13.4 15.0 48.4 13.1 9.7 10.1 11.1
DZ 16.1 10.7 8.0 10.0 8.8 23.7 11.2 7.2 8.4 7.1
LBW 21.6 14.4 11.8 13.2 11.5 22.4 12.3 9.6 10.6 8.7
BYLAN 20.3 11.1 9.3 11.3 12.9 23.0 10.1 7.7 9.6 10.2
NDB 15.3 12.0 9.2 9.2 8.7 20.2 10.7 7.5 6.7 6.5
HSH 22.3 12.5 10.2 12.2 13.3 13.2 6.1 4.8 6.0 6.6

FRA 5.2 3.6 3.4 4.6 5.6 24.2 8.1 5.0 4.9 5.9
BNP 16.4 10.1 8.1 12.5 11.7 35.1 9.5 7.5 10.0 9.6
CA 21.5 11.4 9.7 12.7 15.4 34.5 8.9 7.1 8.5 9.9
SG 21.6 10.9 9.5 12.3 14.7 34.9 8.9 6.4 7.8 8.6
NTX 30.3 17.5 12.0 14.8 13.4 25.5 10.6 6.7 7.7 7.9

ITA 25.4 10.5 4.8 6.9 8.6 20.7 6.0 3.4 2.9 4.7
ISP 26.8 13.3 9.5 11.6 14.1 24.1 7.8 6.4 6.8 9.4
UI 25.9 13.0 9.8 12.5 14.9 20.0 6.3 5.4 5.8 7.5
MPS 39.8 21.6 13.2 14.5 16.1 19.2 8.3 5.7 6.0 7.5
BP 37.2 18.6 13.1 14.5 16.8 16.1 6.2 4.4 4.7 5.6
UBI 31.2 18.6 17.2 15.1 18.1 25.4 10.9 8.0 6.5 9.1

ESP 21.1 11.7 4.5 5.6 10.1 18.6 6.6 2.9 2.8 4.9
BST 29.0 12.8 10.9 10.9 14.5 29.0 7.6 5.9 5.5 7.2
BBVA 28.2 12.8 10.5 10.5 13.0 28.2 7.2 5.6 5.2 6.7
BCXA 29.2 15.3 13.6 13.4 16.5 18.9 8.0 6.3 6.2 8.0
BPE 44.3 22.4 16.4 17.5 23.6 17.3 6.4 4.6 4.8 6.1
BSB 43.6 20.5 16.3 17.1 24.4 18.2 6.1 4.7 4.8 6.5

This table reports the mean absolute pricing errors (MAPE) in the the left panel, and the mean absolute
percentage pricing errors (MAPPE) in the right panel, for the CDS with the indicated maturities. The
results are grouped by country. The estimation is performed with the Bayesian algorithm described in Section
4, based on weekly data from January 9, 2008, to December 18, 2013.
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Table A3: Individual Bank Parameter Estimates

Panel A: German Banks (i=GER)

ηi,j κPi,j σi,j kQi,j αi,j γi,j σi,jε

DB 0.34 0.94 0.15 0.14 1.2 1.83 5.56

[0.29;0.39] [0.33;1.52] [0.13;0.17] [0.10;0.18] [1.02;1.37] [1.69;1.96] [3.58;7.04]

CB 0.05 0.42 0.09 -0.13 2.32 2.38 6.76

[0.03;0.08] [0.12;0.70] [0.08;0.10] [-0.15;-0.10] [2.05;2.60] [2.09;2.66] [5.47;7.88]

DZ 0.06 0.35 0.08 -0.02 1.42 1.77 5.32

[0.03;0.10] [0.11;0.59] [0.07;0.09] [-0.04;0.00] [1.24;1.60] [1.40;2.14] [3.35;6.95]

LBW 0.02 0.34 0.09 -0.09 2.47 1.96 6.32

[0.01;0.04] [0.10;0.57] [0.08;0.10] [-0.10;-0.07] [2.05;2.91] [1.14;2.76] [4.70;7.79]

BYLAN 0.31 0.6 0.12 0.17 1.57 1.42 3.08

[0.25;0.37] [0.23;0.97] [0.11;0.14] [0.13;0.21] [1.29;1.85] [1.17;1.66] [1.75;4.18]

NDB 0.14 0.22 0.08 0 1.18 0.03 4.48

[0.09;0.20] [0.06;0.38] [0.07;0.09] [-0.02;0.03] [0.94;1.41] [0.01;0.04] [2.39;6.48]

HSH 0.77 0.42 0.17 0.22 1.24 1.85 5.71

[0.67;0.88] [0.12;0.72] [0.15;0.19] [0.18;0.26] [0.86;1.63] [1.23;2.49] [2.69;8.82]

Panel B: French Banks (i=FRA)

ηi,j κPi,j σi,j kQi,j αi,j γi,j σi,jε

BNP 0.05 0.7 0.11 -0.05 2.37 1.57 3.77

[0.03;0.08] [0.21;1.19] [0.09;0.12] [-0.10;0.00] [2.12;2.63] [1.50;1.64] [3.05;4.40]

CA 0.18 0.83 0.14 0.02 2.7 1.99 4.73

[0.15;0.21] [0.27;1.38] [0.12;0.15] [-0.02;0.06] [2.42;2.99] [1.89;2.09] [3.43;5.81]

SG 0.18 0.68 0.13 0.02 3.08 1.91 4.46

[0.15;0.20] [0.21;1.13] [0.12;0.15] [-0.02;0.05] [2.83;3.33] [1.81;2.00] [3.04;5.59]

NTX 0.04 0.36 0.11 -0.06 3.23 1.51 3.64

[0.02;0.07] [0.10;0.62] [0.10;0.12] [-0.08;-0.04] [2.94;3.52] [1.35;1.67] [2.64;4.52]

Panel C: Italian Banks (i=ITA)

ηi,j κPi,j σi,j kQi,j αi,j γi,j σi,jε

ISP 0 0.49 0.19 0.02 0 0.77 3.6

[0.00;0.01] [0.12;0.86] [0.17;0.20] [0.00;0.04] [0.00;0.00] [0.75;0.80] [2.23;4.78]

UI 0.07 0.52 0.21 0.08 0 0.91 3.71

[0.04;0.09] [0.14;0.88] [0.19;0.22] [0.05;0.10] [0.00;0.00] [0.88;0.94] [2.09;5.18]

MPS 0.01 0.22 0.16 -0.04 3.41 0.48 4.26

[0.00;0.02] [0.04;0.40] [0.15;0.17] [-0.06;-0.02] [3.17;3.66] [0.45;0.52] [2.67;5.83]

BP 0.04 0.25 0.16 -0.02 3.36 0.51 3.72

[0.01;0.06] [0.06;0.44] [0.15;0.18] [-0.04;-0.00] [2.88;3.85] [0.45;0.57] [2.05;5.28]

UBI 0.15 0.23 0.12 -0.08 2.98 0.04 5.17

[0.12;0.17] [0.06;0.40] [0.11;0.13] [-0.10;-0.06] [2.59;3.37] [0.02;0.06] [3.52;6.71]
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Panel D: Spanish Banks (i=SPA)

ηi,j κPi,j σi,j kQi,j αi,j γi,j σi,jε

BST 0.01 0.52 0.12 -0.09 3.98 0.54 3.98

[0.00;0.01] [0.15;0.89] [0.11;0.13] [-0.11;-0.07] [3.77;4.19] [0.52;0.56] [3.11;4.72]

BBVA 0.01 0.58 0.12 -0.1 4.31 0.64 3.96

[0.00;0.01] [0.16;1.00] [0.11;0.13] [-0.12;-0.08] [4.10;4.52] [0.62;0.67] [3.12;4.64]

BCXA 0.27 0.41 0.17 0.01 2.42 0.11 3.93

[0.21;0.34] [0.12;0.70] [0.15;0.18] [-0.02;0.03] [1.98;2.85] [0.09;0.13] [2.15;5.52]

BPE 0.07 0.32 0.17 -0.07 5.96 0.74 3.64

[0.03;0.12] [0.08;0.56] [0.16;0.19] [-0.10;-0.04] [4.77;7.15] [0.63;0.86] [2.39;4.77]

BSB 0.26 0.44 0.2 -0.01 6.32 0.79 3.36

[0.19;0.33] [0.12;0.75] [0.18;0.22] [-0.04;0.02] [5.29;7.35] [0.70;0.88] [2.00;4.52]

This table reports posterior means and 95% credible intervals (in squared brackets) of the parameter estimates
resulting from the second-stage estimation on bank CDSs. The results are grouped by country. The estimation
is performed with the Bayesian algorithm described in Section 4, based on weekly data from January 9, 2008,
to December 18, 2013.
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Table A4: Principal Component Analysis of Bank-idiosyncratic Intensities

PCs All Banks PCs by Country
PC1 PC2 PC3 PC1 PC2 PC3

DB 0.08 -0.01 0.05 DB 0.21 0.58 -0.72
CB 0.05 -0.02 0.02 CB 0.08 0.28 -0.14
DZ 0.01 -0.01 0.03 DZ 0.09 0.12 -0.04
LBW 0.03 -0.01 0.01 LBW 0.09 0.21 0.18
BYLAN 0.11 0.01 0.01 BYLAN 0.27 0.60 0.65
NDB 0.02 0.00 0.07 NDB 0.11 0.17 0.11
HSH 0.11 0.09 0.63 HSH 0.92 -0.39 -0.04
BNP 0.07 0.01 -0.02 cR2(%) 66.1 86.0 92.0
CA 0.06 0.00 -0.03
SG 0.09 0.00 -0.08 BNP 0.38 0.17 0.03
NTX 0.04 -0.05 0.09 CA 0.56 0.17 -0.77
ISP 0.37 0.41 -0.21 SG 0.59 0.39 0.62
UI 0.48 0.52 -0.22 NTX 0.43 -0.89 0.13
MPS 0.25 -0.08 0.23 cR2(%) 67.2 89.5 96.9
BP 0.42 0.03 0.50
UBI 0.16 -0.07 0.09 ISP 0.47 -0.39 -0.16
BST 0.06 0.01 0.01 UI 0.60 -0.49 -0.06
BBVA 0.05 0.00 0.00 MPS 0.35 0.59 -0.72
BCXA 0.14 -0.36 0.19 BP 0.52 0.48 0.65
BPE 0.36 -0.44 -0.22 UBI 0.17 0.17 0.17
BSB 0.40 -0.46 -0.29 cR2(%) 72.9 90.2 96.7
cR2(%) 53.9 68.8 77.4

BST 0.08 0.04 -0.70
BBVA 0.07 0.08 -0.66
BCXA 0.29 0.95 0.10
BPE 0.63 -0.17 0.24
BSB 0.71 -0.25 -0.11
cR2(%) 78.2 92.7 96.7

This table reports the principal component analysis of the changes in bank-idiosyncratic default intensities.
The principal component analysis is displayed for all European countries included in our sample, in the left
panel, and for country groups, in the right panel.
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Table A5: Term Structure of Individual Bank Risk Premia Components: Germany

Total Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

DB 68 5 56 76 78 5 66 85 83 4 74 89
CB 70 6 57 86 82 4 71 92 89 2 84 94
DZ 62 10 44 79 75 9 58 88 84 5 74 92
LBW 66 8 50 81 78 6 65 89 87 4 80 93
BYLAN 56 7 41 72 67 7 51 81 75 6 61 85
NDB 37 7 27 50 48 8 38 63 62 5 52 73
HSH 34 7 22 48 45 8 29 60 51 8 36 66

Systemic Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

DB 17 14 0 47 19 15 0 55 18 15 0 55
CB 26 20 0 59 25 20 0 60 18 15 0 46
DZ 20 18 0 67 22 20 0 73 20 18 0 69
LBW 23 17 0 59 23 17 0 59 18 14 0 51
BYLAN 17 13 0 45 20 15 0 48 18 14 0 47
NDB 14 10 0 33 18 13 0 41 17 12 0 42
HSH 10 9 0 31 13 11 0 38 13 11 0 40

Country Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

DB 16 13 1 55 22 17 1 64 25 16 3 61
CB 14 10 1 43 21 13 1 55 21 12 2 51
DZ 17 17 1 57 24 21 2 70 28 21 4 71
LBW 17 18 1 59 24 22 1 72 27 22 2 73
BYLAN 12 13 0 46 19 17 1 58 25 18 2 62
NDB 0 0 0 0 0 0 0 1 4 3 0 12
HSH 7 6 1 25 11 10 1 37 15 11 2 42

Idiosyncratic Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

DB 35 9 18 55 36 11 19 60 40 11 24 64
CB 30 10 6 51 35 12 8 62 49 12 16 76
DZ 24 9 9 39 28 12 10 50 35 15 14 63
LBW 26 8 9 43 31 11 10 55 42 14 17 70
BYLAN 26 6 12 39 28 8 13 47 32 9 17 52
NDB 22 3 17 27 30 5 21 37 40 6 29 49
HSH 17 3 12 21 20 4 13 26 24 4 16 31

This table reports summary statistics for the term structure of the percentage contributions of distress risk
premia and their components, to the 1-, 3-, 5-, and 10-year bank CDS spreads for the indicated German banks.
Total denotes the risk premia induced by the total default intensity (αi,jSt+γi,jCt,i+It,i,j); Systemic denotes
the risk premia induced by the scaled systemic default intensity (αi,jSt); Country denotes the risk premia
induced by the scaled country intensity (γi,jCt,i); and Idiosyncratic denotes the risk premia induced by the
idiosyncratic intensity (It,i,j).
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Table A6: Term Structure of Individual Bank Risk Premia Components: France

Total Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

BNP 79 6 65 87 88 5 77 93 93 3 87 97
CA 77 6 63 85 85 5 73 91 89 3 82 94
SG 74 7 57 83 83 6 68 89 87 4 79 93
BFCM 39 1 39 44 54 1 53 59 76 2 73 85
NTX 65 11 49 85 77 9 63 92 86 5 78 96

Systemic Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

BNP 31 22 0 69 29 21 0 67 21 16 0 50
CA 26 20 0 62 25 19 0 59 18 14 0 48
SG 28 20 0 61 25 19 0 58 18 14 0 42
BFCM 1 2 0 8 2 3 0 13 5 7 0 32
NTX 23 19 0 69 21 18 0 65 15 14 0 53

Country Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

BNP 27 23 2 72 36 26 5 83 45 23 13 84
CA 25 21 2 70 33 24 4 79 38 21 10 76
SG 23 20 2 66 32 23 5 75 37 21 11 73
BFCM 0 0 0 2 1 1 0 5 8 7 1 35
NTX 17 16 1 65 26 22 1 79 34 23 4 84

Idiosyncratic Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

BNP 21 14 4 54 21 16 5 61 26 16 8 65
CA 26 16 9 62 33 15 13 66 33 15 13 66
SG 25 13 10 56 32 14 16 62 32 14 16 62
BFCM 52 3 42 53 62 9 32 71 62 9 32 71
NTX 29 15 4 55 37 19 6 68 37 19 6 68

This table reports summary statistics for the term structure of the percentage contributions of distress risk
premia, and their components, to the 1-, 3-, 5-, and 10-year bank CDS spreads for the indicated French banks.
Total denotes the risk premia induced by the total default intensity (αi,jSt+γi,jCt,i+It,i,j); Systemic denotes
the risk premia induced by the scaled systemic default intensity (αi,jSt); Country denotes the risk premia
induced by the scaled country intensity (γi,jCt,i); and Idiosyncratic denotes the risk premia induced by the
idiosyncratic intensity (It,i,j).

11



Table A7: Term Structure of Individual Bank Risk Premia Components: Italy

Total Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

ISP 61 5 50 72 75 5 64 85 87 3 79 92
UI 59 6 47 72 72 6 60 84 84 4 75 90
MPS 50 7 38 69 65 7 53 81 79 4 71 90
BP 50 9 37 75 63 8 49 82 77 5 67 89
UBI 50 9 38 71 60 7 49 75 72 3 63 78

Systemic Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

ISP 0 0 0 0 0 0 0 1 1 1 0 2
UI 0 0 0 0 0 0 0 1 1 1 0 2
MPS 0 0 0 0 0 0 0 0 1 1 0 2
BP 16 13 0 55 16 13 0 53 11 8 0 34
UBI 22 16 0 59 22 16 0 57 14 10 0 36

Country Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

ISP 38 14 9 70 53 15 19 82 70 10 42 91
UI 36 15 8 70 50 16 18 81 65 12 40 87
MPS 31 12 8 65 43 14 18 78 56 12 33 86
BP 14 6 3 29 22 8 7 42 39 9 21 62
UBI 2 1 1 5 3 1 1 7 11 3 5 20

Idiosyncratic Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

ISP 22 9 2 40 21 10 2 44 16 7 1 36
UI 22 9 2 39 22 10 2 42 18 8 3 35
MPS 19 6 3 29 21 7 3 34 21 8 3 36
BP 20 6 6 30 24 7 7 38 25 7 7 40
UBI 26 7 10 35 34 8 15 47 46 7 30 56

This table reports summary statistics for the term structure of the percentage contributions of distress risk
premia, and their components, to the 1-, 3-, 5-, and 10-year bank CDS spreads for the indicated Italian banks.
Total denotes the risk premia induced by the total default intensity (αi,jSt+γi,jCt,i+It,i,j); Systemic denotes
the risk premia induced by the scaled systemic default intensity (αi,jSt); Country denotes the risk premia
induced by the scaled country intensity (γi,jCt,i); and Idiosyncratic denotes the risk premia induced by the
idiosyncratic intensity (It,i,j).
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Table A8: Term Structure of Individual Bank Risk Premia Components: Spain

Total Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

BST 69 6 60 79 80 4 73 86 89 2 85 91
BBVA 70 6 63 80 81 3 74 87 89 1 85 91
BANKIA 37 7 27 54 46 7 34 61 56 6 43 67
BCXA 51 8 42 76 62 7 52 82 73 5 64 85
BPE 57 5 45 68 68 4 58 76 79 3 72 84
BSB 58 5 46 69 68 4 57 76 77 4 68 83

Systemic Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

BST 27 19 0 58 25 18 0 57 16 12 0 42
BBVA 27 19 0 61 24 18 0 58 15 12 0 43
BANKIA 11 9 0 33 11 9 0 33 8 7 0 27
BCXA 15 14 0 63 16 15 0 64 12 11 0 49
BPE 17 12 0 42 15 11 0 38 10 8 0 26
BSB 17 12 0 45 15 11 0 39 10 8 0 28

Country Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

BST 24 13 3 49 34 15 7 63 51 15 20 76
BBVA 26 14 5 56 36 16 9 70 53 15 22 81
BANKIA 6 4 1 15 9 6 1 23 18 9 4 38
BCXA 5 3 0 17 8 5 1 25 18 9 3 44
BPE 16 8 2 32 24 11 4 43 36 12 12 56
BSB 18 11 2 42 26 14 5 53 37 15 12 60

Idiosyncratic Risk Premia
3-year 5-year 10-year

Mean SDev Min Max Mean SDev Min Max Mean SDev Min Max

BST 18 13 2 50 21 14 2 59 22 14 3 60
BBVA 17 13 2 51 19 14 3 58 20 14 4 57
BANKIA 21 4 13 26 26 5 15 33 29 6 18 39
BCXA 31 7 8 40 37 9 10 51 42 9 16 60
BPE 23 6 12 39 28 8 14 49 32 9 17 56
BSB 23 8 9 41 27 10 12 50 30 10 15 54

This table reports summary statistics for the term structure of the percentage contributions of distress risk
premia, and their components, to the 1-, 3-, 5-, and 10-year bank CDS spreads for the indicated Spanish
banks. Total denotes the risk premia induced by the total default intensity (αi,jSt +γi,jCt,i + It,i,j); Systemic
denotes the risk premia induced by the scaled systemic default intensity (αi,jSt); Country denotes the risk
premia induced by the scaled country intensity (γi,jCt,i); and Idiosyncratic denotes the risk premia induced
by the idiosyncratic intensity (It,i,j).
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III Additional Figures
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Figure A.1: Idiosyncratic Intensities by Country

This figure presents the estimated idiosyncratic bank intensities. The intensities are measured in basis points.
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Figure A.2: Principal Component Analysis of Bank Idiosyncratic Intensities

The All Banks panel presents the first principal component of the bank idiosyncratic intensities. The Country
Groups panel repeats the principal component analysis for each country separately. (Note that we perform
the PC analysis on the intensities in first differences and we plot the cumulative sum)
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